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Abstract. We introduce the space of vector multifunctions Xϕ and we study its
completeness. Also we give some approximation theorems in this space. Also we give
some applications with singular kernel operators.
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1. Introduction

In [8] a general approximation theorem in modular spaces was obtained for linear
operators. This theorem was extended in [2] and [9] to some nonlinear operators
in Lϕ and in [3, 4] to some simple space of multifunctions. In [7] these theorems
were extended to vector spaces of multifunctions genereted by Lϕ with Lebesgue
measure. The aim of this note is to obtain a generalization of [8] and [5] for vector
multifunctions with atom measure. Moreover in Section 5 we extend some results
from [6, 9]. In Section 2 we give some initial informations about Musielak-Orlicz
spaces and multifunctions.

Let N be the set of all nonnegative integers and lϕ be the Musielak-Orlicz sequence
space generated by the modular

ρ(x) =

∞∑

i=0

ϕi(ti), x = (ti),

where ϕ = (ϕi) is a sequence of ϕ-functions with parameter , i.e. for every i ∈ N we
have: ϕi : R → R+ = [0,∞), ϕi(u) is an even continuous function, equal to zero iff
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u = 0 and nondecreasing for u > 0 with limu→∞ ϕi(u) = ∞. Let Y be a real separable
Banach space with the norm ‖ · ‖. Let θ be the zero element in Y . Let Pk(Y ) denote
the set of all nonempty and compact subsets of Y . For any A,B ∈ Pk(Y ) we denote

dist(A,B) = max
{

max
x∈A

min
y∈B

‖x− y‖,max
y∈B

min
x∈A

‖x− y‖
}

,

X = {F : N → 2Y : F (i) ∈ Pk(Y ) for every i ∈ N}.

Every function from N to 2Y will be called a sequential vector multifunction. For
every F ∈ X we define the functions |F | by the formula:

|F |(i) = dist(F (i), θ) for every i ∈ N.

Let now [a, b] denote a compact interval for all a, b ∈ R, a 6 b. Define

Xϕ = {F ∈ X : |F | ∈ lϕ}.

LetV be an abstract set of indices . Let V be a filter of subsets ofV . Let 0 : N → Y

be such that 0(i) = θ for every i ∈ N.

2. Preliminary

We will present first some definitions and auxiliary results from the book [9].

Modular spaces

Definition 2.1. Let X be a real vector space. A functional ρ : X → [0,+∞] is called
a modular, if the following conditions hold for arbitrary x, y ∈ X:

1. ρ(0) = 0 and ρ(x) = 0 implies x = 0,
2. ρ(−x) = ρ(x),
3. ρ(αx+ βy) 6 ρ(x) + ρ(y) for α, β > 0, α+ β = 1.

If in place of 3 there holds

3’. ρ(αx+ βy) 6 αρ(x) + βρ(y) for α, β > 0, α+ β = 1,

then the modular ρ is called convex.

Definition 2.2. If ρ is a modular in X, then

Xρ = {x ∈ X : lim
λ→0

ρ(λx) = 0}

is called a modular space.
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Theorem 2.3. If ρ is a modular in X, then

|x|ρ = inf{u > 0 : ρ(
x

u
) 6 u}

is an F-norm in Xρ, having the following properties:

– if ρ(λx1) 6 ρ(λx2) for every λ > 0, where x1, x2 ∈ Xρ, then |x1|ρ 6 |x2|ρ and
moreover,

– if x ∈ Xρ, then |λx|ρ is a nondecreasing function of λ > 0,
– if |x|ρ < 1, then ρ(x) 6 |x|ρ.

If ρ is a convex modular, then

‖x‖ρ = inf{u > 0 : ρ(
x

u
) 6 1},

is a norm in Xρ, which is called the Luxemburg norm.

Theorem 2.4. Let ρ be a modular in X. If x ∈ Xρ and xk ∈ Xρ for k = 1, 2, . . ., then
the condition |x−xk|ρ → 0 as k → ∞ is equivalent to the condition ρ(λ(x−xk)) → 0
as k → ∞ for every λ > 0. If ρ is a convex modular in X, then the same statement
holds, replacing | · |ρ by ‖ · ‖ρ.

Definition 2.5. Let ρ be a modular in X. A sequence {xn} of elements of Xρ is called
modular convergent to x ∈ Xρ, if there exists a λ > 0 such that ρ(λ(xk − x)) → 0 as

k → ∞. We denote this writing xk
ρ
→ x.

Theorem 2.6. The ρ-convergence in Xρ follows from norm convergence in Xρ. Norm
convergence and ρ-convergence are equivalent in Xρ, if and only if, the following
condition holds:

if xk ∈ Xρ, ρ(xk) → 0, then ρ(2xk) → 0.

Definition 2.7. Let ρ be a modular in X. A set A ⊂ Xρ will be called ρ-closed, if

xk ∈ A and xk
ρ
→ x imply x ∈ A.

The smallest ρ-closed set containing the set A will be called the ρ-closure of A and
denoted A

ρ
. If A

ρ
= Xρ, then A will be called ρ-dense in Xρ.

Musielak-Orlicz spaces

Definition 2.8. Let (Ω,Σ, µ) be a measure space, where the measure µ is complete
and not vanishing identically. A real function ϕ on Ω× [0,+∞), will be said to belong
to the class Φ, if it satisfies the following conditions:

i. ϕ(t, u) is a ϕ-function of the variable u > 0 for every t ∈ Ω, i.e. ϕ(t, u) is
a nondecreasing, continuous function of u such that ϕ(t, 0) = 0, ϕ(t, u) > 0 for
u > 0, ϕ(t, u) → ∞ as u → ∞,

ii. ϕ(t, u) is a Σ-measurable function of t for every u > 0.

Let X be the set of all real-valued, Σ-measurable and finite µ-almost everywhere
functions on Ω, with equality µ-almost everywhere.
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It is easily seen that ϕ(t, |x(t)|) is a Σ-measurable function of t for every x ∈ X

and that

ρ(x) =

∫

Ω

ϕ(t, |x(t)|)dµ

is a modular in X . Moreover, if ϕ(t, u) is a convex function of u for all t ∈ Ω, then ρ

is a convex modular in X .

Definition 2.9. The modular space Xρ will be called Musielak-Orlicz space and de-
noted by Lϕ:

Lϕ = {x ∈ X :

∫

Ω

ϕ(t, λ|x(t)|)dµ → 0 as λ → 0+}.

Moreover, the set

L
ϕ
0 = {x ∈ X :

∫

Ω

ϕ(t, |x(t)|)dµ < ∞}

will be called the Musielak-Orlicz class. A function x ∈ X will be called a finite element
of Lϕ, if λx ∈ L

ϕ
0 for every λ > 0. The space of all finite elements of X will be denoted

by Eϕ.

If X is the space of sequences x = {ti} with real terms ti, ϕ = {ϕi}, where ϕi are
ϕ-functions and

ρ(x) =

∞∑

i=1

ϕi(|ti|),

we shall write lϕ in place of Lϕ and lϕ is called the Musielak-Orlicz sequence space.

Theorem 2.10.

a. Lϕ is the set of all x ∈ X such that ρ(λx) < ∞ for some λ > 0.
b. L

ϕ
0 is a convex subset of Lϕ and Lϕ is the smallest vector subspace of X containing

L
ϕ
0 .

c. Eϕ is the largest vector subspace of X contained in L
ϕ
0 .

Definition 2.11. A function ϕ will be called locally integrable, if

∫

A

ϕ(t, u)dµ < ∞

for every u > 0 and A ∈ Σ with µ(A) < ∞.

Theorem 2.12. Let S be the set of all simple, integrable functions on Ω and let
ϕ ∈ Φ be locally integrable. Then S ⊂ Eϕ. Moreover, supposing µ to be σ-finite, Eϕ

is the closure of S with respect to the F-norm | · |ρ and S is ρ-dense in Lϕ.

Theorem 2.13. Let µ be σ-finite. Then the Musielak-Orlicz space Lϕ is complete
with respect to the F-norm | · |ρ.
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Theorem 2.14.

a. If µ is σ-finite and atomless and ϕ ∈ Φ, then Eϕ = L
ϕ
0 = Lϕ, if and only if, the

following condition holds:

(∆2) ϕ(t, 2u) 6 Kϕ(t, u) + h(t)

for all u > 0 and almost every t ∈ Ω, where h is a nonnegative, integrable function
in Ω and K is a positive constant.

b. If ϕ ∈ Φ, where ϕ = {ϕn}, then l
ϕ
0 = lϕ, if and only if, the following condi-

tion holds: there exist positive numbers δ,K and a sequence {an} of nonnegative

numbers with
∞∑

n=1
an < ∞ such that

(δ2) ϕn(u) < δ implies ϕn(2u) 6 Kϕn(u) + an

for all u > 0, n = 1, 2, . . .

Let us remark that the implication

(∆2) ⇒ L
ϕ
0 = Lϕ

holds without any assumptions on the measure µ for any ϕ ∈ Φ.

Theorem 2.15.

a. If µ is σ-finite and atomless and ϕ ∈ Φ, ϕ is locally integrable, then the following
conditions are mutually equivalent:

(1) L
ϕ
0 = Lϕ,

(2) Eϕ = Lϕ,
(3) ϕ satisfies the condition (∆2),
(4) modular convergence and norm convergence are equivalent in Lϕ.

b. If ϕ ∈ Φ, where ϕ = {ϕn}, then the following conditions are mutually equivalent:

(1) l
ϕ
0 = lϕ,

(2) Eϕ = lϕ,
(3) ϕ = (ϕi) satisfies the condition (δ2),
(4) modular convergence and norm convergence are equivalent in lϕ.

Let us remark that if ϕ ∈ Φ is a convex function of the variable u ∈ R for every
t ∈ Ω, then ϕ is of the form

ϕ(t, u) =

|u|∫

0

p(t, τ)dτ, (1)

where p(t, u) is the right-hand derivative of ϕ(t, u) for a fixed t ∈ Ω.

Definition 2.16. We shall say that a function ϕ ∈ Φ is an N -function if ϕ is a convex
function of u for every t ∈ Ω and there hold the conditions:
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lim
u→0+

ϕ(t, u)

u
= 0, (2)

lim
u→∞

ϕ(t, u)

u
= ∞ (3)

for every t ∈ Ω.

Theorem 2.17. ϕ ∈ Φ is an N -function, if and only if, ϕ is of the form (1), where
p(t, τ) > 0 for τ > 0, p(t, τ) is a right-continuous and nondecreasing function of
τ > 0, p(t, 0) = 0, p(t, τ) → ∞ as τ → ∞ for every t ∈ Ω.

Remark 2.18. Let ϕ be an N -function of the form (1) and let

p⋆(t, σ) = sup{τ : p(t, τ) 6 σ}.

If p satisfies the conditions expressed in the previous theorem, then p⋆ satisfies the
same assumptions.

Definition 2.19. Let ϕ be an N -function of the form (1) and let p⋆ be defined by the
formula

p⋆(t, σ) = sup{τ : p(t, τ) 6 σ}.

Then the function

ϕ⋆(t, u) =

|u|∫

0

p⋆(t, σ)dσ

is called complementary to ϕ in the sense of Young.

Evidently, ϕ⋆ is again an N -function.

Theorem 2.20. Let ϕ be an N -function and let ϕ⋆ be complementary to ϕ in the
sense of Young. Then they satisfy the Young inequality

uv 6 ϕ(t, u) + ϕ⋆(t, v)

for u, v > 0, t ∈ Ω, and

ϕ⋆(t, v) = sup
u>0

{uv − ϕ(t, u)}, ϕ(t, u) = sup
v>0

{uv − ϕ⋆(t, v)},

consequently, ϕ is complementary to ϕ⋆ in the sense of Young.

We shall introduce now the Orlicz norm ‖ · ‖ρ,O in Lϕ if ϕ is an N -function.

Theorem 2.21. Let a measure µ be σ-finite, ϕ be an N -function and ϕ locally inte-
grable, ϕ⋆ complementary to ϕ in the sense of Young and let

L
ϕ⋆

1 =
{

y :

∫

Ω

ϕ⋆(t, |y(t)|)dµ 6 1, y measurable
}

.

Then

‖x‖ρ,O = sup
y∈L

ϕ⋆

1

∫

Ω

x(t)y(t)dµ
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is a norm in Lϕ (called the Orlicz norm) and

‖x‖ρ 6 ‖x‖ρ,O 6 2‖x‖ρ

for all x ∈ Lϕ.

Theorem 2.22. Let ϕ be an N -function, ϕ⋆ complementary to ϕ in the sense of
Young, x ∈ Lϕ, y ∈ Lϕ⋆

. Then there hold the following Hölder inequalities:

∣
∣
∣

∫

Ω

x(t)y(t)dµ
∣
∣
∣ 6 ‖x‖ρ,O‖y‖ρ0,

∣
∣
∣

∫

Ω

x(t)y(t)dµ
∣
∣
∣ 6 ‖x‖ρ‖y‖ρ0,O,

where

ρ(x) =

∫

Ω

ϕ(t, |x(t)|)dµ, ρ0(y) =

∫

Ω

ϕ⋆(t, |y(t)|)dµ.

Corollary 2.23. If ϕ is an N -function and ϕ⋆ is a complementary to ϕ in the sense
of Young, y ∈ Lϕ⋆

, then

f(x) =

∫

Ω

x(t)y(t)dµ

is a linear, continuous functional over Lϕ with the norm ‖f‖ = ‖y‖ρ0,O.

Definition 2.24. We say that functional f : Lϕ → R is ρ- continuous if xn
ρ
→ 0 in

Lϕ implies f(xn) → 0.

Theorem 2.25. Let a measure µ be σ-finite and let an N -function ϕ satisfies the
following condition:

– for every u0 > 0 there exists a c > 0 such that ϕ(t,u)
u

> c for u > u0 and all
t ∈ Ω.

Let the function ϕ⋆ complementary to ϕ be locally integrable. Then

f(x) =

∫

Ω

x(t)y(t)dµ

is a ρ-continuous linear functional over Lϕ for every y ∈ Lϕ⋆

.

Theorem 2.26. Let a measure µ be σ-finite and let N -function ϕ be such that:

– for every u0 > 0 there exists a c > 0 for which ϕ(t,u)
u

> c for u > u0 and t ∈ Ω.

Moreover, let both functions ϕ and ϕ⋆ (complementary to ϕ) be locally integrable. Then
for every linear, ρ-continuous functional f over Lϕ there exists a function y ∈ Lϕ⋆

such that

f(x) =

∫

Ω

x(t)y(t)dµ

for every x ∈ Lϕ.
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Theorem 2.27. Let an N -function ϕ and its complementary ϕ⋆ be locally integrable.

Let us suppose that for every u0 > 0 there is a c > 0 for which ϕ(t,u)
u

> c for
u > u0 and t ∈ Ω. Moreover, let us suppose that one of the following two conditions
is satisfied:

a. a measure µ is σ-finite and atomless and ϕ satisfies the condition (∆2),
b. Ω = {1, 2, . . .}, µ({n}) = 1 for n = 1, 2, . . . and condition (δ2) holds for ϕ.

Then the general form of a linear functional over Lϕ continuous with respect to the
norm is

f(x) =

∫

Ω

x(t)y(t)dµ

for x ∈ Lϕ with y ∈ Lϕ⋆

, and ‖f‖ = ‖y‖ρ0, 0.

Now we will present some general definitions and auxiliary results about the mul-
tifunctions from the book [1].

Let now X be a Hausdorff topological space. Denote:

– 2X : the collection of all subsets of X ,
– 2X \ ∅: the collection of all nonempty subsets of X .
– Pf (X) = {A ⊆ X : nonempty, closed},
– Pfc(X) = {A ⊆ X : nonempty, closed, convex},
– Pbf (X) = {A ⊆ X : nonempty, bounded, closed},
– Pbfc(X) = {A ⊆ X : nonempty, bounded, closed, convex},
– Pk(X) = {A ⊆ X : nonempty, compact},
– Pkc = {A ⊆ X : nonempty, compact, convex}.

If (X, d) is a metric space we denote:

BX(x, a) = {y ∈ X : d(x, y) < a}.

Let now (X, d) be a metric space. In what follows given any x ∈ X and A ∈ 2X \ ∅,
the distance of x from A, is defined by

d(x,A) = inf{d(x, a) : a ∈ A}.

As usual, d(x, ∅) = +∞.

Definition 2.28. If A,C ∈ 2X, we define

a. h⋆(A,C) = sup{d(a, C) : a ∈ A},
b. h⋆(C,A) = sup{d(c, A) : a ∈ C},
c. h(A,C) = max{h⋆(A,C), h⋆(C,A)}, the Hausdorff distance between A and C.

Directly from the definition, we can check that the following properties hold for
any A,C,D ∈ 2X :

h(A,A) = 0, h(A,C) = h(C,A), h(A,C) 6 h(A,D) + h(D,C).

Hence h is an extended pseudometric on 2X .
Moreover, note that h(A,C) = 0 if and only if A = C. So Pf (X) equipped with

the Hausdorff distance h becomes a metric space.
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Theorem 2.29. If (X, d) is a complete metric space, then so is (Pf (X), h).

Theorem 2.30. If (X, d) is a complete metric space, then Pk(X) is a closed subset
of (Pf (X), h), whence (Pk(X), h) is a complete metric space.

Theorem 2.31. Pbf (X) is a closed subset of (Pf (X), h). Therefore, if (X, d) is a com-
plete metric space, so is (Pbf (X), h).

Theorem 2.32. If X is a Banach space, then Pkc(X), Pbfc(X), Pfc(X), Pk(X),
Pbf (X) are complete subspaces of the metric space (Pf (X), h).

Theorem 2.33. If X is a normed space and A,C,A1, C1, A2, C2 ∈ 2X \ ∅, then

h(λA, λC) = |λ|h(A,C) for all λ ∈ R,

h(A1 +A2, C1 + C2) 6 h(A1, C1) + h(A2 + C2).

Measurable multifunctions

Now we will present some definitions and auxiliary results about the measurable
multifunction from the book [1].

Throughout this section (Ω,Σ) is a measurable space, (X, d) a separable metric
space.Let us fix a multifunction F : Ω → 2X .

Definition 2.34.

a. F is said to be “strongly measurable” if for every C ⊆ X closed, we have

F−(C) = {ω ∈ Ω : F (ω) ∩C 6= ∅} ∈ Σ.

b. F is said to be “measurable” if for every U ⊆ X open, we have

F−(U) = {ω ∈ Ω : F (ω) ∩ U 6= ∅} ∈ Σ.

c. F is said to be “K-measurable” if for every K ⊆ X compact, we have

F−(K) = {ω ∈ Ω : F (ω) ∩K 6= ∅} ∈ Σ.

d. F is said to be “graph measurable” if

GrF = {(ω, x) ∈ Ω ×X : x ∈ F (ω)} ∈ Σ ×B(X).

Theorem 2.35. If F is strongly measurable, then F is measurable.

Theorem 2.36. A multifunction F : Ω → 2X is measurable if and only if for every
x ∈ X,

ω → d(x, F (ω)) = inf{d(x, x′) : x′ ∈ F (ω)}

is a measurable R+-valued function.
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Definition 2.37. Let Y be a metric space. A function f : Ω ×X → Y is said to be
a “Caratheodory function” if

a. for every x ∈ X, ω → f(ω, x) is measurable,
b. for every ω ∈ Ω, x → f(ω, x) is continuous.

Theorem 2.38. If Y is a metric space and f : Ω × X → Y is a Caratheodory
function, then f(·, ·) is jointly measurable.

Theorem 2.39. If F : Ω → Pf (X) ∪ ∅ is measurable, then F is graph measurable.

Theorem 2.40. If F : Ω → Pk(X), then F is strongly measurable if and only if it is
measurable.

Theorem 2.41. If F : Ω → Pf (X), then strong measurability ⇒ measurability ⇒
K-measurability.

Theorem 2.42. If X is σ-compact and F : Ω → Pf (X), then strong measurability
⇔ measurability ⇔ K-measurability.

Theorem 2.43. Let (Ω,Σ, µ) be a σ-finite and complete measure space. Let (X, d)
be complete separable metric space and F : Ω → Pf (X). Consider the following
statements:

(a) for every D ∈ B(X), F−(D) ∈ Σ,
(b) F is strongly measurable,
(c) F is measurable,
(d) for every x ∈ X, ω → d(x, F (ω)) is measurable,
(e) GrF ∈ Σ ×B(X),

then all these statements are equivalent.

Theorem 2.44. If (Ω,Σ) is a measurable space, X is a complete measure space and
F : Ω → Pf (X) is measurable, then F admits a measurable selection, i.e., there exists
f : Ω → X measurable such that for every ω ∈ Ω, f(ω) ∈ F (ω).

Theorem 2.45. If (Ω,Σ) is a measurable space, X is a complete metric space and
F : Ω → Pf (X), then the following statements are equivalent:

a. F is measurable,
b. there exists a sequence {fn}n>1 of measurable selectors of F such that for every

ω ∈ Ω

F (ω) = {fn(ω)}n>1.

Decomposable sets and sets of L
p selectors

Now we will present some definitions and auxiliary results about the decomposable
sets and the sets of selectors from the book [1].

Let now (Ω,Σ, µ) be a σ-finite measure space, X a Banach separable space. Let
L0(Ω,X) be the space of all equivalent classes in the set of all measurable maps from
Ω to X .
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Definition 2.46. A subset K of L0(Ω,X) is said to be decomposable if for all f1, f2 ∈
L0(Ω,X), A ∈ Σ, we have

χAf1 + χΩ\Af2 ∈ K.

For 1 6 p 6 ∞, we define

S
p
F = {f ∈ Lp(Ω,X) : f(ω) ∈ F (ω) µ− a.e.}.

Lemma 2.47. If F : Ω → 2X \ ∅ is graph measurable and 1 6 p 6 ∞, then S
p
F 6= ∅

if and only if
inf{‖x‖ : x ∈ F (ω)} 6 h(ω) µ− a.e.

for some h ∈ Lp(Ω).

Theorem 2.48. If F : Ω → Pf (X) is graph measurable and S
p
F 6= ∅, then there exists

a sequence {fn}n>1 ⊆ S
p
F such that

F (ω) = {fn}n>1µ− a.e.

Theorem 2.49. If K is a nonempty, closed subset of Lp(Ω,X) for 1 6 p < ∞, then
K = S

p
F for some uniquely defined measurable multifunction F : Ω → Pf (X) if and

only if K is decomposable.

Definition 2.50. A multifunction F : Ω → 2X \∅ is said to be Lp-integrably bounded
(1 < p 6 ∞) and integrably bounded (for p = 1) if there exists h ∈ Lp(Ω) such that

|F (ω)| := sup{‖x‖ : x ∈ F (ω)} 6 h(ω) µ− a.e.

Theorem 2.51. If F is graph measurable, then S
p
F is Lp(Ω,X)-bounded if and only

if F is Lp-integrably bounded (1 < p 6 ∞).

Integral of multifunction

Now we will present some definitions and auxiliary results about the integral of
multifunction from the book [1].

Throughout out this section (Ω,Σ, µ) is a fixed σ-finite measure space and X is
a separable Banach space. Let F : Ω → 2X \ ∅ be a multifunction with S1

F 6= ∅. Then
the set-valued Aumann integral of F is defined in the following way.

Definition 2.52.
∫

Ω

F (ω)dµ(ω) =
{∫

Ω

f(ω)dµ(ω) : f ∈ S1
F

}

.

We say that two measurable multifunctions F1, F2 : Ω → 2X \ ∅ are equivalent if
F1(ω) = F2(ω) µ-a.e. Denote by L1

f (X) the space of all equivalence classes of multi-
functions F : Ω → Pf (X) which are graph measurable and integrably bounded. Also
by L1

fc(X) we donote the subspace of all (equivalence classes) of graph measurable
and integrably bounded multifunctions with values in Pfc(X). Since
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h(F (ω), G(ω)) 6 |F (ω)|+ |G(ω)|,

we deduce that h(F,G) ∈ L1(Ω)+. So we can define

∆(F,G) =

∫

Ω

h(F (ω), G(ω))dµ(ω).

It is easily seen that ∆ is a metric on L1
f (X) and we have

Theorem 2.53. The space (L1
f (X), ∆) is a complete metric space and (L1

fc(X), ∆)
is its closed subspace.

Theorem 2.54. If F,G ∈ L1
f (X), then

h(

∫

Ω

F (ω)dµ(ω),

∫

Ω

G(ω)dµ(ω)) 6 ∆(F,G).

Theorem 2.55. If F,G : Ω → Pf (X) are graph measurable with S1
G, S

1
F 6= ∅, then

cl

∫

Ω

(F (ω) +G(ω))dµ(ω) = cl[

∫

Ω

F (ω)dµ(ω) +

∫

Ω

G(ω)dµ(ω)].

Theorem 2.56. If F : Ω → 2X \∅ is a graph measurable multifunctions with S1
F 6= ∅,

then

cl

∫

Ω

convF (ω)dµ(ω) = conv

∫

Ω

F (ω)dµ(ω) = cl

∫

Ω

convF (ω)dµ(ω).

Theorem 2.57. If the measure µ is nonatomic, F : Ω → Pf (X) is graph measurable
and S1

F 6= ∅, then cl
∫

Ω

F (ω)dµ(ω) is convex.

Corollary 2.58. If µ is nonatomic, X is finite dimensional, F : Ω → Pf (X) is graph
measurable and S1

f 6= ∅, then
∫

Ω

F (ω)dµ(ω) is convex.

Theorem 2.59. If µ is nonatomic, F : Ω → Pf (R
n) is graph measurable and for

every ω ∈ Ω, F (ω) ⊆ Rn
+, then

∫

Ω

F (ω)dµ(ω) =

∫

Ω

convF (ω)dµ(ω).

3. Main results

We start from the generalization of the definition of Musielak-Orlicz sequence space
of multifunctions from [5]. We use some ideas from [3, 5, 7, 8] and we generalize the
main approximation theorem for lϕ from [8].
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Theorem 3.1. Let Fn ∈ Xϕ for every n ∈ N. Suppose that for every ǫ > 0 and for
every a > 0 there is K > 0 such that ρ(a dist(Fn(·), Fm(·)) < ǫ for all m,n > K.
Then there exists F ∈ Xϕ, such that ρ(a dist(Fn(·), F (·))) → 0 as n → ∞ for every
a > 0.

Proof. Let Fn ∈ Xϕ for every n ∈ N. If the assumptions of the Theorem hold, then
{Fn} is a Cauchy sequence in the complete space C(Y ) with Hausdorff metric. Hence
there are F (i) ∈ C(Y ) such that dist(Fn(i), F (i)) → 0 as n → ∞ for every i ∈ N. Fix
ǫ > 0. Applying the Fatou lemma we easily obtain that there exists K > 0 such that
ρ(a dist(Fn(·), F (·)) 6 ǫ for every n > K. We also have for every a > 0 that

ρ(a|F |) 6 ρ(2a dist(Fn(·), F (·)) + ρ(2a|Fn|).

So F ∈ Xϕ. ⊓⊔

The space Xϕ will be called a Musielak-Orlicz vector sequence space of multifunc-
tions.

Definition 3.2. A function g : V → R tends to zero with respect to a filter V, written

g(v)
V

−→ 0, if for every ǫ > 0 there is V ∈ V such that | g(v) |< ǫ for every v ∈ V .

Definition 3.3. An operator C : Xϕ → Xϕ will be called an X-linear operator if for
all F,G ∈ Xϕ, a, b ∈ R,

C(aF + bG)(i) = aC(F )(i) + bC(G)(i) for every i ∈ N.

Definition 3.4. A family T = (Tv)v∈V of operators Tv : Xϕ → Xϕ, for every v ∈ V

will be called (X, dist,V)-bounded, if there exist constants k1, k2 > 0 and a function

g : V → R+ such that g(v)
V

−→ 0, and for all F,G ∈ Xϕ there is a set VF,G ∈ V for
which

ρ(a dist(Tv(F )(·), Tv(G)(·))) 6 k1ρ(ak2 dist(F (·), G(·))) + g(v)

for all v ∈ VF,G and for every a > 0.

Definition 3.5. Let Fv ∈ Xϕ for every v ∈ V. Let F ∈ Xϕ. We write Fv
d,ϕ,V
−→ F , if

for every ǫ > 0 and every a > 0 there exists V ∈ V such that ρ(a dist(Fv(·), F (·))) < ǫ

for every v ∈ V .

Definition 3.6. Let S ⊂ Xϕ.

SXϕ,d,V = {F ∈ Xϕ : Fv
d,ϕ,V
−→ F, for some Fv ∈ S, v ∈ V}.

Theorem 3.7. Let the family T = (Tv)v∈V of X-linear operators for every v ∈ V,

be (X, dist,V)-bounded. Let So ⊂ Xϕ and let Tv(F )
d,ϕ,V
−→ F for every F ∈ So. Let

now S be the set of all finite linear combinations of elements of the set So. Then

Tv(F )
d,ϕ,V
−→ F for every F ∈ SXϕ,d,V .

The proof analogous to that Theorem 4 in [5] is omitted.
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4. Applications

Let nowV = N and the filter V will consist of all sets V ⊂ V which are complements
of finite sets.

We shall say that ϕ is τ+-bounded, if there are constants k1, k2 > 1 and a double
sequence {ǫn,j} such that

ϕn+j(u) 6 k1ϕn(k2u) + ǫn,j

for u ∈ R, n, j = 0, 1, . . . , where ǫn,j > 0, ǫn,0 = 0, ǫj =
∞∑

n=0
ǫn,j < ∞, i ∈ N, and

ǫj → 0
as j → ∞, s = supj∈N ǫj < ∞. Let Kv,j : V×V → R+ and let the family (Kv)v∈V

be almost-singular, i.e. σ(v) =
∑∞

j=0 Kv,j 6 σ < ∞ for all v ∈ V and
Kv,j

σ(v)

V
−→ 0

for j = 1, 2, . . . Let F ∈ Xϕ. We define a family T = (Tv)v∈V of operators by the
formula:

Tv(F )(i) =

i∑

j=0

Kv,i−jF (j) for every i ∈ V.

Lemma 4.1. Let (Kv)v∈V be almost-singular, let ϕ = (ϕi)i∈V be τ+-bounded and ϕi

be convex for every i ∈ V, then Tv : lϕ → lϕ for every v ∈ V.

The proof analogous to that of Lemma 1 in [5] is omitted.

Lemma 4.2. If the assumptions of Lemma 1 hold, then the family T = (Tv)v∈V is
(Xϕ, dist,V)-bounded and Tv is Xϕ-linear-operator for every v ∈ V.

The proof analogous to that of Lemma 2 in [5] is omitted.

Lemma 4.3. Let ϕ = (ϕi)
∞
i=0 satisfy the condition (δ2). Let F ∈ Xϕ and F =

(F (i))∞i=0. Let Fv be such that Fv(i) = F (i) for i = 0, 1, . . . , v and Fv(i) = 0 for i >

v. Then Fv
d,ϕ,V
−→ F .

The proof analogous to that of Lemma 3 in [5] is omitted.
Now, let us denote: xj,Kv

= {0, . . . , 0
︸ ︷︷ ︸

j−times

,Kv,1,Kv,2, . . .}.

Theorem 4.4. Let the assumptions of Lemmas 1 and 3 hold. If xj,Kv

d,ϕ,V
−→ 0 for

every j ∈ V, Kv,o
V

−→ 1, then Tv(F )
d,ϕ,V
−→ F for every F ∈ Xϕ.

The proof analogous to that of Theorem 5 in [5] is omitted.
Now, let us denote: xj,Kv

= {0, . . . , 0
︸ ︷︷ ︸

j−times

,Kv,0,Kv,1, . . .}.

Theorem 4.5. Let the assumptions of Lemmas 1 and 3 hold. If xj,Kv

d,ϕ,V
−→ 0 for

every j ∈ V, then Tv(F )
d,ϕ,V
−→ 0 for every F ∈ Xϕ.

The proof analogous to that of Theorem 6 in [5] is omitted.
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5. Pk(Y )-linear functionals

Now we will present some generalizations on the spaces of multifunctions of the
classical Riesz theorems about a linear and continuous functional on a Banach space.
We use the results of [6, 9].

Let now ϕ be an N -function and N be the set of all natural numbers. Let ‖ · ‖ϕ
denote the Luxemburg norm in lϕ and ‖ · ‖Oϕ denote the Orlicz norm in lϕ.

Definition 5.1. The mapping M : Xϕ → Pk(Y ) such that M(F + G) = M(F ) +
M(G), M(aF ) = aM(F ) for all F,G ∈ Xϕ, a > 0, will be called an Pk(Y )-linear
functional on Xϕ.

Definition 5.2. We say that M : Xϕ → Pk(Y ) is continuous at F ∈ Xϕ if for
every ǫ > 0 there is δ > 0 such that from ‖ dist(F (·), G(·))‖ϕ < δ it follows that
dist(M(F ),M(G)) < ǫ.

If M is continuous at every F ∈ Xϕ, then we say that M is continuous on Xϕ.

Let f = (fn), where fn ∈ R for every n ∈ N. Denote

Mf (F ) =

∞∑

n=1

fnF (n)

for every F ∈ X .

Lemma 5.3. Let 1 < p < ∞, 1
p
+ 1

q
= 1, f = (fk) where fk = 0 for k = n+1, n+2, . . .

Then Mf is a Pk(Y )-linear and continuous functional on Xlp .

Proof. We have

Mf(F ) =

n∑

k=1

fkF (k)

for every F ∈ Xlp , so Mf(F ) ∈ Pk(Y ) for every F ∈ Xlp and Mf is a Pk(Y )-linear.
We also have for all F,G ∈ Xlp that

dist(Mf (F ),Mf (G)) 6

n∑

k=1

|fk| dist(F (k), G(k)) 6 ‖f‖lq‖ dist(F (·).G(·))‖lp .

⊓⊔

Theorem 5.4. Let 1 < p < ∞, 1
p
+ 1

q
= 1, f ∈ lq. Then Mf is a Pk(Y )-linear and

continuous functional on Xlp .

Proof. Let f = [f1, . . . , fn, . . .], fn = [f1, . . . , fn, 0, 0, . . .], f ∈ lq.
It is easy to prove that for every F ∈ Xlp the sequence {Mfn(F )} is a Cauchy

sequence in 〈Pk(Y ), dist〉, so there is A ∈ Pk(Y ) such that dist(Mfn , A) → 0 as
n → ∞.

We also have for every F ∈ Xlp :

dist(Mf (F ),Mfn(F )) 6

∞∑

k=n+1

dist(fkF (k), θ) 6

6

∞∑

k=n+1

|fk||F (k)| 6 (

∞∑

k=n+1

|fk|
q)

1
q ‖|F |‖lp → 0

as n → ∞. So Mf(F ) = A.
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Let F,G ∈ Xlp . We have

dist(Mf (F ),Mf (G)) 6

6 dist(Mf(F ),Mfn(F )) + dist(Mfn(F ),Mfn(G)) + dist(Mfn(G),Mf (G)),

so Mf is Pk(Y )-linear and continuous functional on Xlp . ⊓⊔

Analogously we obtain the following two theorems (see also [9], Theorem 13.18):

Theorem 5.5. Let f ∈ m. Then Mf is a Pk(Y )-linear and continuous functional
on Xl1 .

Theorem 5.6. Let ϕ and its complementary ϕ⋆ be the N-functions, ϕ = (ϕi), such

that for every u0 > 0 there is c > 0 for which ϕi(u)
u

> c for u > u0 and i ∈ N, (δ2)

holds for ϕ, f ∈ lϕ
⋆

. Then Mf in Pk(Y )-linear and continuous functional on Xϕ.

Denote

wf (F ) =

∞∑

n=1

fn|F (n)|,

for every F ∈ Xlp .
Applying the proof of Theorem 5.4 we obtain the following

Theorem 5.7. Let 1 < p < ∞, 1
p
+ 1

q
= 1, f ∈ lq, f(n) > 0 for every n ∈ N. Then:

wf (F +G) 6 wf (F ) + wf (G) and wf (aF ) = awf (F ) for all F,G ∈ Xlp .

Moreover, for every ǫ > 0 there is δ > 0 such that from F,G ∈ Xlp , ‖|F | − |G|‖lp < δ

it follows |wf (F )− wf (G)| < ǫ.
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