Approximation in Musielak-Orlicz sequence vector spaces of multifunctions

Andrzej Kasperski

Abstract. We introduce the space of vector multifunctions X_{φ} and we study its completeness. Also we give some approximation theorems in this space. Also we give some applications with singular kernel operators.

Keywords: Musielak-Orlicz space, multifunction, singular kernel.

2010 Mathematics Subject Classification: 54C60, 28B20.

1. Introduction

In [8] a general approximation theorem in modular spaces was obtained for linear operators. This theorem was extended in [2] and [9] to some nonlinear operators in L^{φ} and in [3, 4] to some simple space of multifunctions. In [7] these theorems were extended to vector spaces of multifunctions generated by L^{φ} with Lebesgue measure. The aim of this note is to obtain a generalization of [8] and [5] for vector multifunctions with atom measure. Moreover in Section 5 we extend some results from [6, 9]. In Section 2 we give some initial informations about Musielak-Orlicz spaces and multifunctions.

Let $\mathbb N$ be the set of all nonnegative integers and l^φ be the Musielak-Orlicz sequence space generated by the modular

$$\rho(x) = \sum_{i=0}^{\infty} \varphi_i(t_i), \qquad x = (t_i),$$

where $\varphi = (\varphi_i)$ is a sequence of φ -functions with parameter, i.e. for every $i \in \mathbb{N}$ we have: $\varphi_i : \mathbb{R} \to \mathbb{R}_+ = [0, \infty), \ \varphi_i(u)$ is an even continuous function, equal to zero iff

A. Kasperski

R. Wituła, D. Słota, W. Hołubowski (eds.), Monograph on the Occasion of 100th Birthday Anniversary of Zygmunt Zahorski. Wydawnictwo Politechniki Śląskiej, Gliwice 2015, pp. 203–218.

Institute of Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland, e-mail: andrzej.kasperski@polsl.pl

u = 0 and nondecreasing for $u \ge 0$ with $\lim_{u\to\infty} \varphi_i(u) = \infty$. Let Y be a real separable Banach space with the norm $\|\cdot\|$. Let θ be the zero element in Y. Let $P_k(Y)$ denote the set of all nonempty and compact subsets of Y. For any $A, B \in P_k(Y)$ we denote

$$\operatorname{dist}(A, B) = \max\left\{ \max_{x \in A} \min_{y \in B} \|x - y\|, \max_{y \in B} \min_{x \in A} \|x - y\| \right\}$$
$$X = \{F : \mathbb{N} \to 2^Y : F(i) \in P_k(Y) \text{ for every } i \in \mathbb{N}\}.$$

Every function from \mathbb{N} to 2^Y will be called a sequential vector multifunction. For every $F \in X$ we define the functions |F| by the formula:

$$|F|(i) = \operatorname{dist}(F(i), \theta)$$
 for every $i \in \mathbb{N}$.

Let now [a, b] denote a compact interval for all $a, b \in \mathbb{R}$, $a \leq b$. Define

$$X_{\varphi} = \{ F \in X : |F| \in l^{\varphi} \}.$$

Let **V** be an abstract set of indices . Let \mathcal{V} be a filter of subsets of **V** . Let $\mathbf{0} : \mathbb{N} \to Y$ be such that $\mathbf{0}(i) = \theta$ for every $i \in \mathbb{N}$.

2. Preliminary

We will present first some definitions and auxiliary results from the book [9].

Modular spaces

Definition 2.1. Let X be a real vector space. A functional $\rho : X \to [0, +\infty]$ is called a modular, if the following conditions hold for arbitrary $x, y \in X$:

- 1. $\rho(0) = 0$ and $\rho(x) = 0$ implies x = 0,
- 2. $\rho(-x) = \rho(x)$,
- 3. $\rho(\alpha x + \beta y) \leq \rho(x) + \rho(y)$ for $\alpha, \beta \geq 0, \alpha + \beta = 1$.

If in place of 3 there holds

3'.
$$\rho(\alpha x + \beta y) \leq \alpha \rho(x) + \beta \rho(y)$$
 for $\alpha, \beta \geq 0, \alpha + \beta = 1$,

then the modular ρ is called convex.

Definition 2.2. If ρ is a modular in X, then

$$X_{\rho} = \{ x \in X : \lim_{\lambda \to 0} \rho(\lambda x) = 0 \}$$

is called a modular space.

Theorem 2.3. If ρ is a modular in X, then

$$|x|_{\rho} = \inf\{u > 0 : \rho(\frac{x}{u}) \leqslant u\}$$

is an F-norm in X_{ρ} , having the following properties:

- if $\rho(\lambda x_1) \leq \rho(\lambda x_2)$ for every $\lambda > 0$, where $x_1, x_2 \in X_{\rho}$, then $|x_1|_{\rho} \leq |x_2|_{\rho}$ and moreover,
- if $x \in X_{\rho}$, then $|\lambda x|_{\rho}$ is a nondecreasing function of $\lambda \ge 0$,
- if $|x|_{\rho} < 1$, then $\rho(x) \leq |x|_{\rho}$.

If ρ is a convex modular, then

$$||x||_{\rho} = \inf\{u > 0 : \rho(\frac{x}{u}) \leqslant 1\},$$

is a norm in X_{ρ} , which is called the Luxemburg norm.

Theorem 2.4. Let ρ be a modular in X. If $x \in X_{\rho}$ and $x_k \in X_{\rho}$ for k = 1, 2, ..., then the condition $|x - x_k|_{\rho} \to 0$ as $k \to \infty$ is equivalent to the condition $\rho(\lambda(x - x_k)) \to 0$ as $k \to \infty$ for every $\lambda > 0$. If ρ is a convex modular in X, then the same statement holds, replacing $|\cdot|_{\rho}$ by $||\cdot||_{\rho}$.

Definition 2.5. Let ρ be a modular in X. A sequence $\{x_n\}$ of elements of X_ρ is called modular convergent to $x \in X_\rho$, if there exists a $\lambda > 0$ such that $\rho(\lambda(x_k - x)) \to 0$ as $k \to \infty$. We denote this writing $x_k \xrightarrow{\rho} x$.

Theorem 2.6. The ρ -convergence in X_{ρ} follows from norm convergence in X_{ρ} . Norm convergence and ρ -convergence are equivalent in X_{ρ} , if and only if, the following condition holds:

if
$$x_k \in X_\rho$$
, $\rho(x_k) \to 0$, then $\rho(2x_k) \to 0$.

Definition 2.7. Let ρ be a modular in X. A set $A \subset X_{\rho}$ will be called ρ -closed, if $x_k \in A$ and $x_k \xrightarrow{\rho} x$ imply $x \in A$.

The smallest ρ -closed set containing the set A will be called the ρ -closure of A and denoted \overline{A}^{ρ} . If $\overline{A}^{\rho} = X_{\rho}$, then A will be called ρ -dense in X_{ρ} .

Musielak-Orlicz spaces

Definition 2.8. Let (Ω, Σ, μ) be a measure space, where the measure μ is complete and not vanishing identically. A real function φ on $\Omega \times [0, +\infty)$, will be said to belong to the class Φ , if it satisfies the following conditions:

- i. $\varphi(t, u)$ is a φ -function of the variable $u \ge 0$ for every $t \in \Omega$, i.e. $\varphi(t, u)$ is a nondecreasing, continuous function of u such that $\varphi(t, 0) = 0$, $\varphi(t, u) > 0$ for u > 0, $\varphi(t, u) \to \infty$ as $u \to \infty$,
- ii. $\varphi(t, u)$ is a Σ -measurable function of t for every $u \ge 0$.

Let X be the set of all real-valued, Σ -measurable and finite μ -almost everywhere functions on Ω , with equality μ -almost everywhere.

It is easily seen that $\varphi(t, |x(t)|)$ is a Σ -measurable function of t for every $x \in X$ and that

$$\rho(x) = \int_{\Omega} \varphi(t, |x(t)|) d\mu$$

is a modular in X. Moreover, if $\varphi(t, u)$ is a convex function of u for all $t \in \Omega$, then ρ is a convex modular in X.

Definition 2.9. The modular space X_{ρ} will be called Musielak-Orlicz space and denoted by L^{φ} :

$$L^{\varphi} = \{ x \in X : \int_{\Omega} \varphi(t, \lambda | x(t) |) d\mu \to 0 \text{ as } \lambda \to 0_+ \}.$$

Moreover, the set

$$L_0^{\varphi}=\{x\in X: \int\limits_{\varOmega}\varphi(t,|x(t)|)d\mu<\infty\}$$

will be called the Musielak-Orlicz class. A function $x \in X$ will be called a finite element of L^{φ} , if $\lambda x \in L_0^{\varphi}$ for every $\lambda > 0$. The space of all finite elements of X will be denoted by E^{φ} .

If X is the space of sequences $x = \{t_i\}$ with real terms t_i , $\varphi = \{\varphi_i\}$, where φ_i are φ -functions and

$$\rho(x) = \sum_{i=1}^{\infty} \varphi_i(|t_i|),$$

we shall write l^{φ} in place of L^{φ} and l^{φ} is called the Musielak-Orlicz sequence space.

Theorem 2.10.

- a. L^{φ} is the set of all $x \in X$ such that $\rho(\lambda x) < \infty$ for some $\lambda > 0$.
- b. L_0^{φ} is a convex subset of L^{φ} and L^{φ} is the smallest vector subspace of X containing L_0^{φ} .
- c. E^{φ} is the largest vector subspace of X contained in L_0^{φ} .

Definition 2.11. A function φ will be called locally integrable, if

$$\int\limits_A \varphi(t,u) d\mu < \infty$$

for every u > 0 and $A \in \Sigma$ with $\mu(A) < \infty$.

Theorem 2.12. Let S be the set of all simple, integrable functions on Ω and let $\varphi \in \Phi$ be locally integrable. Then $S \subset E^{\varphi}$. Moreover, supposing μ to be σ -finite, E^{φ} is the closure of S with respect to the F-norm $|\cdot|_{\rho}$ and S is ρ -dense in L^{φ} .

Theorem 2.13. Let μ be σ -finite. Then the Musielak-Orlicz space L^{φ} is complete with respect to the F-norm $|\cdot|_{\rho}$.

Theorem 2.14.

a. If μ is σ -finite and atomless and $\varphi \in \Phi$, then $E^{\varphi} = L^{\varphi}$, if and only if, the following condition holds:

$$(\Delta_2) \qquad \qquad \varphi(t, 2u) \leqslant K\varphi(t, u) + h(t)$$

for all $u \ge 0$ and almost every $t \in \Omega$, where h is a nonnegative, integrable function in Ω and K is a positive constant.

b. If $\varphi \in \Phi$, where $\varphi = \{\varphi_n\}$, then $l_0^{\varphi} = l^{\varphi}$, if and only if, the following condition holds: there exist positive numbers δ , K and a sequence $\{a_n\}$ of nonnegative numbers with $\sum_{n=1}^{\infty} a_n < \infty$ such that

(
$$\delta_2$$
) $\varphi_n(u) < \delta \text{ implies } \varphi_n(2u) \leqslant K\varphi_n(u) + a_n$

for all $u \ge 0, n = 1, 2, ...$

Let us remark that the implication

$$(\Delta_2) \Rightarrow L_0^{\varphi} = L^{\varphi}$$

holds without any assumptions on the measure μ for any $\varphi \in \Phi$.

Theorem 2.15.

- a. If μ is σ -finite and atomless and $\varphi \in \Phi$, φ is locally integrable, then the following conditions are mutually equivalent:
 - (1) $L_0^{\varphi} = L^{\varphi}$,
 - (2) $E^{\varphi} = L^{\varphi}$,
 - (3) φ satisfies the condition (Δ_2) ,
 - (4) modular convergence and norm convergence are equivalent in L^{φ} .
- b. If $\varphi \in \Phi$, where $\varphi = \{\varphi_n\}$, then the following conditions are mutually equivalent:
 - (1) $l_0^{\varphi} = l^{\varphi}$,
 - (2) $E^{\varphi} = l^{\varphi}$,
 - (3) $\varphi = (\varphi_i)$ satisfies the condition (δ_2) ,
 - (4) modular convergence and norm convergence are equivalent in l^{φ} .

Let us remark that if $\varphi \in \Phi$ is a convex function of the variable $u \in R$ for every $t \in \Omega$, then φ is of the form

$$\varphi(t,u) = \int_{0}^{|u|} p(t,\tau) d\tau, \qquad (1)$$

where p(t, u) is the right-hand derivative of $\varphi(t, u)$ for a fixed $t \in \Omega$.

Definition 2.16. We shall say that a function $\varphi \in \Phi$ is an N-function if φ is a convex function of u for every $t \in \Omega$ and there hold the conditions:

$$\lim_{u \to 0_+} \frac{\varphi(t, u)}{u} = 0, \tag{2}$$

$$\lim_{u \to \infty} \frac{\varphi(t, u)}{u} = \infty \tag{3}$$

for every $t \in \Omega$.

Theorem 2.17. $\varphi \in \Phi$ is an N-function, if and only if, φ is of the form (1), where $p(t,\tau) > 0$ for $\tau > 0$, $p(t,\tau)$ is a right-continuous and nondecreasing function of $\tau \ge 0$, p(t,0) = 0, $p(t,\tau) \to \infty$ as $\tau \to \infty$ for every $t \in \Omega$.

Remark 2.18. Let φ be an *N*-function of the form (1) and let

$$p^{\star}(t,\sigma) = \sup\{\tau : p(t,\tau) \leqslant \sigma\}$$

If p satisfies the conditions expressed in the previous theorem, then p^* satisfies the same assumptions.

Definition 2.19. Let φ be an N-function of the form (1) and let p^* be defined by the formula

$$p^{\star}(t,\sigma) = \sup\{\tau : p(t,\tau) \leqslant \sigma\}$$

Then the function

$$\varphi^{\star}(t,u) = \int_{0}^{|u|} p^{\star}(t,\sigma) d\sigma$$

is called complementary to φ in the sense of Young.

Evidently, φ^* is again an N-function.

Theorem 2.20. Let φ be an N-function and let φ^* be complementary to φ in the sense of Young. Then they satisfy the Young inequality

$$uv \leqslant \varphi(t,u) + \varphi^*(t,v)$$

for $u, v \ge 0, t \in \Omega$, and

$$\varphi^{\star}(t,v) = \sup_{u>0} \{uv - \varphi(t,u)\}, \qquad \qquad \varphi(t,u) = \sup_{v>0} \{uv - \varphi^{\star}(t,v)\},$$

consequently, φ is complementary to φ^* in the sense of Young.

We shall introduce now the Orlicz norm $\|\cdot\|_{\rho,O}$ in L^{φ} if φ is an N-function.

Theorem 2.21. Let a measure μ be σ -finite, φ be an N-function and φ locally integrable, φ^* complementary to φ in the sense of Young and let

$$L_1^{\varphi^{\star}} = \Big\{ y : \int_{\Omega} \varphi^{\star}(t, |y(t)|) d\mu \leqslant 1, \quad y \text{ measurable} \Big\}.$$

Then

$$\|x\|_{\rho,O} = \sup_{y \in L_1^{\varphi^\star}} \int_{\Omega} x(t)y(t)d\mu$$

is a norm in L^{φ} (called the Orlicz norm) and

$$\|x\|_{\rho} \leqslant \|x\|_{\rho,O} \leqslant 2\|x\|_{\rho}$$

for all $x \in L^{\varphi}$.

Theorem 2.22. Let φ be an N-function, φ^* complementary to φ in the sense of Young, $x \in L^{\varphi}$, $y \in L^{\varphi^*}$. Then there hold the following Hölder inequalities:

$$\left| \int_{\Omega} x(t)y(t)d\mu \right| \leq \|x\|_{\rho,O}\|y\|_{\rho^{0}},$$
$$\left| \int_{\Omega} x(t)y(t)d\mu \right| \leq \|x\|_{\rho}\|y\|_{\rho^{0},O},$$

where

$$\rho(x) = \int_{\Omega} \varphi(t, |x(t)|) d\mu, \qquad \qquad \rho^{0}(y) = \int_{\Omega} \varphi^{\star}(t, |y(t)|) d\mu$$

Corollary 2.23. If φ is an N-function and φ^* is a complementary to φ in the sense of Young, $y \in L^{\varphi^*}$, then

$$f(x) = \int_{\Omega} x(t)y(t)d\mu$$

is a linear, continuous functional over L^{φ} with the norm $||f|| = ||y||_{\rho^0,O}$.

Definition 2.24. We say that functional $f : L^{\varphi} \to \mathbb{R}$ is ρ - continuous if $x_n \xrightarrow{\rho} 0$ in L^{φ} implies $f(x_n) \to 0$.

Theorem 2.25. Let a measure μ be σ -finite and let an N-function φ satisfies the following condition:

- for every $u_0 > 0$ there exists a c > 0 such that $\frac{\varphi(t,u)}{u} \ge c$ for $u \ge u_0$ and all $t \in \Omega$.

Let the function φ^* complementary to φ be locally integrable. Then

$$f(x) = \int_{\Omega} x(t)y(t)d\mu$$

is a ρ -continuous linear functional over L^{φ} for every $y \in L^{\varphi^{\star}}$.

Theorem 2.26. Let a measure μ be σ -finite and let N-function φ be such that:

- for every $u_0 > 0$ there exists a c > 0 for which $\frac{\varphi(t,u)}{u} \ge c$ for $u \ge u_0$ and $t \in \Omega$.

Moreover, let both functions φ and φ^* (complementary to φ) be locally integrable. Then for every linear, ρ -continuous functional f over L^{φ} there exists a function $y \in L^{\varphi^*}$ such that

$$f(x) = \int_{\Omega} x(t)y(t)d\mu$$

for every $x \in L^{\varphi}$.

Theorem 2.27. Let an N-function φ and its complementary φ^* be locally integrable. Let us suppose that for every $u_0 > 0$ there is a c > 0 for which $\frac{\varphi(t,u)}{u} \ge c$ for $u \ge u_0$ and $t \in \Omega$. Moreover, let us suppose that one of the following two conditions is satisfied:

- a. a measure μ is σ -finite and atomless and φ satisfies the condition (Δ_2) ,
- b. $\Omega = \{1, 2, ...\}, \mu(\{n\}) = 1 \text{ for } n = 1, 2, ... \text{ and condition } (\delta_2) \text{ holds for } \varphi.$

Then the general form of a linear functional over L^{φ} continuous with respect to the norm is

$$f(x) = \int_{\Omega} x(t)y(t)d\mu$$

for $x \in L^{\varphi}$ with $y \in L^{\varphi^*}$, and $||f|| = ||y||_{\rho^0}, 0.$

Now we will present some general definitions and auxiliary results about the multifunctions from the book [1].

Let now X be a Hausdorff topological space. Denote:

- 2^X : the collection of all subsets of X,
- $-2^X \setminus \emptyset$: the collection of all nonempty subsets of X.
- $P_f(X) = \{ A \subseteq X : \text{ nonempty, closed} \},\$
- $-P_{fc}(X) = \{A \subseteq X : \text{ nonempty, closed, convex}\},\$
- $-P_{bf}(X) = \{A \subseteq X : \text{ nonempty, bounded, closed}\},\$
- $-P_{bfc}(X) = \{A \subseteq X : \text{ nonempty, bounded, closed, convex}\},\$
- $-P_k(X) = \{A \subseteq X : \text{ nonempty, compact}\},\$
- $P_{kc} = \{A \subseteq X : \text{ nonempty, compact, convex}\}.$

If (X, d) is a metric space we denote:

$$B_X(x, a) = \{ y \in X : d(x, y) < a \}.$$

Let now (X, d) be a metric space. In what follows given any $x \in X$ and $A \in 2^X \setminus \emptyset$, the distance of x from A, is defined by

$$d(x, A) = \inf\{d(x, a) : a \in A\}.$$

As usual, $d(x, \emptyset) = +\infty$.

Definition 2.28. If $A, C \in 2^X$, we define

a. $h^*(A, C) = \sup\{d(a, C) : a \in A\},\$ b. $h^*(C, A) = \sup\{d(c, A) : a \in C\},\$ c. $h(A, C) = \max\{h^*(A, C), h^*(C, A)\},\$ the Hausdorff distance between A and C.

Directly from the definition, we can check that the following properties hold for any $A, C, D \in 2^X$:

$$h(A, A) = 0, \quad h(A, C) = h(C, A), \quad h(A, C) \le h(A, D) + h(D, C).$$

Hence h is an extended pseudometric on 2^X .

Moreover, note that h(A, C) = 0 if and only if $\overline{A} = \overline{C}$. So $P_f(X)$ equipped with the Hausdorff distance h becomes a metric space.

Theorem 2.29. If (X, d) is a complete metric space, then so is $(P_f(X), h)$.

Theorem 2.30. If (X, d) is a complete metric space, then $P_k(X)$ is a closed subset of $(P_f(X), h)$, whence $(P_k(X), h)$ is a complete metric space.

Theorem 2.31. $P_{bf}(X)$ is a closed subset of $(P_f(X), h)$. Therefore, if (X, d) is a complete metric space, so is $(P_{bf}(X), h)$.

Theorem 2.32. If X is a Banach space, then $P_{kc}(X)$, $P_{bfc}(X)$, $P_{fc}(X)$, $P_k(X)$, $P_{bf}(X)$ are complete subspaces of the metric space $(P_f(X), h)$.

Theorem 2.33. If X is a normed space and $A, C, A_1, C_1, A_2, C_2 \in 2^X \setminus \emptyset$, then

$$h(\lambda A, \lambda C) = |\lambda| h(A, C) \quad \text{for all } \lambda \in R,$$

$$h(A_1 + A_2, C_1 + C_2) \leq h(A_1, C_1) + h(A_2 + C_2)$$

Measurable multifunctions

Now we will present some definitions and auxiliary results about the measurable multifunction from the book [1].

Throughout this section (Ω, Σ) is a measurable space, (X, d) a separable metric space. Let us fix a multifunction $F : \Omega \to 2^X$.

Definition 2.34.

a. F is said to be "strongly measurable" if for every $C \subseteq X$ closed, we have

$$F^{-}(C) = \{\omega \in \Omega : F(\omega) \cap C \neq \emptyset\} \in \Sigma.$$

b. F is said to be "measurable" if for every $U \subseteq X$ open, we have

$$F^{-}(U) = \{ \omega \in \Omega : F(\omega) \cap U \neq \emptyset \} \in \Sigma.$$

c. F is said to be "K-measurable" if for every $K \subseteq X$ compact, we have

$$F^{-}(K) = \{ \omega \in \Omega : F(\omega) \cap K \neq \emptyset \} \in \Sigma.$$

d. F is said to be "graph measurable" if

$$GrF = \{(\omega, x) \in \Omega \times X : x \in F(\omega)\} \in \Sigma \times B(X).$$

Theorem 2.35. If F is strongly measurable, then F is measurable.

Theorem 2.36. A multifunction $F : \Omega \to 2^X$ is measurable if and only if for every $x \in X$,

$$\omega \to d(x, F(\omega)) = \inf\{d(x, x') : x' \in F(\omega)\}$$

is a measurable \overline{R}_+ -valued function.

Definition 2.37. Let Y be a metric space. A function $f : \Omega \times X \to Y$ is said to be a "Caratheodory function" if

- a. for every $x \in X$, $\omega \to f(\omega, x)$ is measurable,
- b. for every $\omega \in \Omega$, $x \to f(\omega, x)$ is continuous.

Theorem 2.38. If Y is a metric space and $f : \Omega \times X \to Y$ is a Caratheodory function, then $f(\cdot, \cdot)$ is jointly measurable.

Theorem 2.39. If $F : \Omega \to P_f(X) \cup \emptyset$ is measurable, then F is graph measurable.

Theorem 2.40. If $F : \Omega \to P_k(X)$, then F is strongly measurable if and only if it is measurable.

Theorem 2.41. If $F : \Omega \to P_f(X)$, then strong measurability \Rightarrow measurability \Rightarrow *K*-measurability.

Theorem 2.42. If X is σ -compact and $F : \Omega \to P_f(X)$, then strong measurability \Leftrightarrow measurability \Leftrightarrow K-measurability.

Theorem 2.43. Let (Ω, Σ, μ) be a σ -finite and complete measure space. Let (X, d) be complete separable metric space and $F : \Omega \to P_f(X)$. Consider the following statements:

(a) for every $D \in B(X)$, $F^{-}(D) \in \Sigma$,

- (b) F is strongly measurable,
- (c) F is measurable,
- (d) for every $x \in X$, $\omega \to d(x, F(\omega))$ is measurable,
- (e) $GrF \in \Sigma \times B(X)$,

then all these statements are equivalent.

Theorem 2.44. If (Ω, Σ) is a measurable space, X is a complete measure space and $F: \Omega \to P_f(X)$ is measurable, then F admits a measurable selection, i.e., there exists $f: \Omega \to X$ measurable such that for every $\omega \in \Omega$, $f(\omega) \in F(\omega)$.

Theorem 2.45. If (Ω, Σ) is a measurable space, X is a complete metric space and $F : \Omega \to P_f(X)$, then the following statements are equivalent:

- a. F is measurable,
- b. there exists a sequence $\{f_n\}_{n \ge 1}$ of measurable selectors of F such that for every $\omega \in \Omega$

$$F(\omega) = \overline{\{f_n(\omega)\}}_{n \ge 1}.$$

Decomposable sets and sets of L^p selectors

Now we will present some definitions and auxiliary results about the decomposable sets and the sets of selectors from the book [1].

Let now (Ω, Σ, μ) be a σ -finite measure space, X a Banach separable space. Let $L^0(\Omega, X)$ be the space of all equivalent classes in the set of all measurable maps from Ω to X.

Definition 2.46. A subset K of $L^0(\Omega, X)$ is said to be decomposable if for all $f_1, f_2 \in L^0(\Omega, X)$, $A \in \Sigma$, we have

$$\chi_A f_1 + \chi_{\Omega \setminus A} f_2 \in K.$$

For $1 \leq p \leq \infty$, we define

$$S_F^p = \{ f \in L^p(\Omega, X) : f(\omega) \in F(\omega) \mid \mu - a.e. \}.$$

Lemma 2.47. If $F: \Omega \to 2^X \setminus \emptyset$ is graph measurable and $1 \leq p \leq \infty$, then $S_F^p \neq \emptyset$ if and only if

$$\inf\{\|x\| : x \in F(\omega)\} \leq h(\omega) \quad \mu - a.e.$$

for some $h \in L^p(\Omega)$.

Theorem 2.48. If $F : \Omega \to P_f(X)$ is graph measurable and $S_F^p \neq \emptyset$, then there exists a sequence $\{f_n\}_{n \ge 1} \subseteq S_F^p$ such that

$$F(\omega) = \overline{\{f_n\}}_{n \ge 1} \mu - a.e.$$

Theorem 2.49. If K is a nonempty, closed subset of $L^p(\Omega, X)$ for $1 \leq p < \infty$, then $K = S_F^p$ for some uniquely defined measurable multifunction $F : \Omega \to P_f(X)$ if and only if K is decomposable.

Definition 2.50. A multifunction $F : \Omega \to 2^X \setminus \emptyset$ is said to be L^p -integrably bounded (1 and integrably bounded (for <math>p = 1) if there exists $h \in L^p(\Omega)$ such that

 $|F(\omega)| := \sup\{||x|| : x \in F(\omega)\} \leq h(\omega) \quad \mu - a.e.$

Theorem 2.51. If F is graph measurable, then S_F^p is $L^p(\Omega, X)$ -bounded if and only if F is L^p -integrably bounded (1 .

Integral of multifunction

Now we will present some definitions and auxiliary results about the integral of multifunction from the book [1].

Throughout out this section (Ω, Σ, μ) is a fixed σ -finite measure space and X is a separable Banach space. Let $F : \Omega \to 2^X \setminus \emptyset$ be a multifunction with $S_F^1 \neq \emptyset$. Then the set-valued Aumann integral of F is defined in the following way.

Definition 2.52.

$$\int_{\Omega} F(\omega) d\mu(\omega) = \Big\{ \int_{\Omega} f(\omega) d\mu(\omega) : f \in S_F^1 \Big\}.$$

We say that two measurable multifunctions $F_1, F_2 : \Omega \to 2^X \setminus \emptyset$ are equivalent if $F_1(\omega) = F_2(\omega) \mu$ -a.e. Denote by $\mathbf{L}_f^1(X)$ the space of all equivalence classes of multifunctions $F : \Omega \to P_f(X)$ which are graph measurable and integrably bounded. Also by $\mathbf{L}_{fc}^1(X)$ we donote the subspace of all (equivalence classes) of graph measurable and integrably bounded multifunctions with values in $P_{fc}(X)$. Since

$$h(F(\omega), G(\omega)) \leq |F(\omega)| + |G(\omega)|$$

we deduce that $h(F,G) \in L^1(\Omega)_+$. So we can define

$$\Delta(F,G) = \int_{\Omega} h(F(\omega),G(\omega))d\mu(\omega).$$

It is easily seen that Δ is a metric on $\mathbf{L}^1_f(X)$ and we have

Theorem 2.53. The space $(\mathbf{L}_{f}^{1}(X), \Delta)$ is a complete metric space and $(\mathbf{L}_{fc}^{1}(X), \Delta)$ is its closed subspace.

Theorem 2.54. If $F, G \in \mathbf{L}^1_f(X)$, then

$$h(\int_{\Omega} F(\omega)d\mu(\omega), \int_{\Omega} G(\omega)d\mu(\omega)) \leqslant \Delta(F,G).$$

Theorem 2.55. If $F, G : \Omega \to P_f(X)$ are graph measurable with $S^1_G, S^1_F \neq \emptyset$, then

$$cl\int_{\Omega} \overline{(F(\omega) + G(\omega))} d\mu(\omega) = cl[\int_{\Omega} F(\omega)d\mu(\omega) + \int_{\Omega} G(\omega)d\mu(\omega)].$$

Theorem 2.56. If $F: \Omega \to 2^X \setminus \emptyset$ is a graph measurable multifunctions with $S_F^1 \neq \emptyset$, then

$$cl\int_{\Omega} \overline{conv}F(\omega)d\mu(\omega) = \overline{conv}\int_{\Omega} F(\omega)d\mu(\omega) = cl\int_{\Omega} convF(\omega)d\mu(\omega).$$

Theorem 2.57. If the measure μ is nonatomic, $F : \Omega \to P_f(X)$ is graph measurable and $S_F^1 \neq \emptyset$, then $cl \int_{\Omega} F(\omega)d\mu(\omega)$ is convex.

Corollary 2.58. If μ is nonatomic, X is finite dimensional, $F : \Omega \to P_f(X)$ is graph measurable and $S_f^1 \neq \emptyset$, then $\int_{\Omega} F(\omega) d\mu(\omega)$ is convex.

Theorem 2.59. If μ is nonatomic, $F : \Omega \to P_f(\mathbb{R}^n)$ is graph measurable and for every $\omega \in \Omega$, $F(\omega) \subseteq \mathbb{R}^n_+$, then

$$\int_{\Omega} F(\omega) d\mu(\omega) = \int_{\Omega} conv F(\omega) d\mu(\omega).$$

3. Main results

We start from the generalization of the definition of Musielak-Orlicz sequence space of multifunctions from [5]. We use some ideas from [3, 5, 7, 8] and we generalize the main approximation theorem for l^{φ} from [8]. **Theorem 3.1.** Let $F_n \in X_{\varphi}$ for every $n \in \mathbb{N}$. Suppose that for every $\epsilon > 0$ and for every a > 0 there is K > 0 such that $\rho(a \operatorname{dist}(F_n(\cdot), F_m(\cdot)) < \epsilon$ for all m, n > K. Then there exists $F \in X_{\varphi}$, such that $\rho(a \operatorname{dist}(F_n(\cdot), F(\cdot))) \to 0$ as $n \to \infty$ for every a > 0.

Proof. Let $F_n \in X_{\varphi}$ for every $n \in \mathbb{N}$. If the assumptions of the Theorem hold, then $\{F_n\}$ is a Cauchy sequence in the complete space C(Y) with Hausdorff metric. Hence there are $F(i) \in C(Y)$ such that $dist(F_n(i), F(i)) \to 0$ as $n \to \infty$ for every $i \in \mathbb{N}$. Fix $\epsilon > 0$. Applying the Fatou lemma we easily obtain that there exists K > 0 such that $\rho(a \operatorname{dist}(F_n(\cdot), F(\cdot)) \leq \epsilon$ for every n > K. We also have for every a > 0 that

$$\rho(a|F|) \leq \rho(2a\operatorname{dist}(F_n(\cdot), F(\cdot)) + \rho(2a|F_n|))$$

So $F \in X_{\varphi}$.

The space X_{φ} will be called a Musielak-Orlicz vector sequence space of multifunctions.

Definition 3.2. A function $g: \mathbf{V} \to R$ tends to zero with respect to a filter \mathcal{V} , written $g(v) \xrightarrow{\mathcal{V}} 0$, if for every $\epsilon > 0$ there is $V \in \mathcal{V}$ such that $|g(v)| < \epsilon$ for every $v \in V$.

Definition 3.3. An operator $C: X_{\varphi} \to X_{\varphi}$ will be called an X-linear operator if for all $F, G \in X_{\varphi}, a, b \in \mathbb{R}$,

$$C(aF + bG)(i) = aC(F)(i) + bC(G)(i) \qquad for \ every \ i \in \mathbb{N}.$$

Definition 3.4. A family $T = (T_v)_{v \in \mathbf{V}}$ of operators $T_v : X_{\varphi} \to X_{\varphi}$, for every $v \in \mathbf{V}$ will be called $(X, \operatorname{dist}, \mathcal{V})$ -bounded, if there exist constants $k_1, k_2 > 0$ and a function $g : \mathbf{V} \to \mathbb{R}_+$ such that $g(v) \xrightarrow{\mathcal{V}} 0$, and for all $F, G \in X_{\varphi}$ there is a set $V_{F,G} \in \mathcal{V}$ for which

$$\rho(a\operatorname{dist}(T_v(F)(\cdot), T_v(G)(\cdot))) \leqslant k_1 \rho(ak_2\operatorname{dist}(F(\cdot), G(\cdot))) + g(v)$$

for all $v \in V_{F,G}$ and for every a > 0.

Definition 3.5. Let $F_v \in X_{\varphi}$ for every $v \in \mathbf{V}$. Let $F \in X_{\varphi}$. We write $F_v \xrightarrow{d,\varphi,\mathcal{V}} F$, if for every $\epsilon > 0$ and every a > 0 there exists $V \in \mathcal{V}$ such that $\rho(a \operatorname{dist}(F_v(\cdot), F(\cdot))) < \epsilon$ for every $v \in V$.

Definition 3.6. Let $S \subset X_{\varphi}$.

$$S_{X_{\varphi},d,\mathcal{V}} = \{ F \in X_{\varphi} : F_v \xrightarrow{d,\varphi,\mathcal{V}} F, \text{ for some } F_v \in S, v \in \mathbf{V} \}.$$

Theorem 3.7. Let the family $T = (T_v)_{v \in \mathbf{V}}$ of X-linear operators for every $v \in \mathbf{V}$, be $(X, \operatorname{dist}, \mathcal{V})$ -bounded. Let $S_o \subset X_{\varphi}$ and let $T_v(F) \xrightarrow{d, \varphi, \mathcal{V}} F$ for every $F \in S_o$. Let now S be the set of all finite linear combinations of elements of the set S_o . Then $T_v(F) \xrightarrow{d, \varphi, \mathcal{V}} F$ for every $F \in S_{X_{\varphi}, d, \mathcal{V}}$.

The proof analogous to that Theorem 4 in [5] is omitted.

4. Applications

Let now $\mathbf{V} = \mathbb{N}$ and the filter \mathcal{V} will consist of all sets $V \subset \mathbf{V}$ which are complements of finite sets.

We shall say that φ is τ_+ -bounded, if there are constants $k_1, k_2 \ge 1$ and a double sequence $\{\epsilon_{n,j}\}$ such that

$$\varphi_{n+j}(u) \leqslant k_1 \varphi_n(k_2 u) + \epsilon_{n,j}$$

for $u \in R, n, j = 0, 1, \ldots$, where $\epsilon_{n,j} \ge 0$, $\epsilon_{n,0} = 0$, $\epsilon_j = \sum_{n=0}^{\infty} \epsilon_{n,j} < \infty$, $i \in \mathbb{N}$, and $\epsilon_j \to 0$

as $j \to \infty$, $\mathbf{s} = \sup_{j \in \mathbb{N}} \epsilon_j < \infty$. Let $K_{v,j} : \mathbf{V} \times \mathbf{V} \to \mathbb{R}_+$ and let the family $(K_v)_{v \in \mathbf{V}}$ be almost-singular, i.e. $\sigma(v) = \sum_{j=0}^{\infty} K_{v,j} \leq \sigma < \infty$ for all $v \in \mathbf{V}$ and $\frac{K_{v,j}}{\sigma(v)} \xrightarrow{\mathcal{V}} 0$ for $j = 1, 2, \ldots$ Let $F \in X_{\varphi}$. We define a family $\mathcal{T} = (\mathcal{T}_v)_{v \in \mathbf{V}}$ of operators by the formula:

$$\mathcal{T}_{v}(F)(i) = \sum_{j=0}^{i} K_{v,i-j}F(j) \text{ for every } i \in \mathbf{V}.$$

Lemma 4.1. Let $(K_v)_{v \in \mathbf{V}}$ be almost-singular, let $\varphi = (\varphi_i)_{i \in \mathbf{V}}$ be τ_+ -bounded and φ_i be convex for every $i \in \mathbf{V}$, then $\mathcal{T}_v : l^{\varphi} \to l^{\varphi}$ for every $v \in \mathbf{V}$.

The proof analogous to that of Lemma 1 in [5] is omitted.

Lemma 4.2. If the assumptions of Lemma 1 hold, then the family $\mathcal{T} = (\mathcal{T}_v)_{v \in \mathbf{V}}$ is $(X_{\varphi}, \text{dist}, \mathcal{V})$ -bounded and \mathcal{T}_v is X_{φ} -linear-operator for every $v \in \mathbf{V}$.

The proof analogous to that of Lemma 2 in [5] is omitted.

Lemma 4.3. Let $\varphi = (\varphi_i)_{i=0}^{\infty}$ satisfy the condition (δ_2) . Let $F \in X_{\varphi}$ and $F = (F(i))_{i=0}^{\infty}$. Let F_v be such that $F_v(i) = F(i)$ for $i = 0, 1, \ldots, v$ and $F_v(i) = 0$ for i > v. Then $F_v \stackrel{d,\varphi,\mathcal{V}}{\longrightarrow} F$.

The proof analogous to that of Lemma 3 in [5] is omitted. Now, let us denote: $x_{j,K_v} = \{\underbrace{0,\ldots,0}_{i \text{ times}}, K_{v,1}, K_{v,2}, \ldots\}.$

Theorem 4.4. Let the assumptions of Lemmas 1 and 3 hold. If $x_{j,K_v} \xrightarrow{d,\varphi,\mathcal{V}} 0$ for every $j \in \mathbf{V}, K_{v,o} \xrightarrow{\mathcal{V}} 1$, then $\mathcal{T}_v(F) \xrightarrow{d,\varphi,\mathcal{V}} F$ for every $F \in X_{\varphi}$.

The proof analogous to that of Theorem 5 in [5] is omitted. Now, let us denote: $\overline{x}_{j,K_v} = \{\underbrace{0,\ldots,0}_{i-times}, K_{v,0}, K_{v,1}, \ldots\}.$

Theorem 4.5. Let the assumptions of Lemmas 1 and 3 hold. If $\overline{x}_{j,K_v} \xrightarrow{d,\varphi,\mathcal{V}} 0$ for every $j \in \mathbf{V}$, then $\mathcal{T}_v(F) \xrightarrow{d,\varphi,\mathcal{V}} \mathbf{0}$ for every $F \in X_{\varphi}$.

The proof analogous to that of Theorem 6 in [5] is omitted.

5. $P_k(Y)$ -linear functionals

Now we will present some generalizations on the spaces of multifunctions of the classical Riesz theorems about a linear and continuous functional on a Banach space. We use the results of [6, 9].

Let now φ be an *N*-function and \mathbb{N} be the set of all natural numbers. Let $\|\cdot\|_{\varphi}$ denote the Luxemburg norm in l^{φ} and $\|\cdot\|_{\varphi}^{O}$ denote the Orlicz norm in l^{φ} .

Definition 5.1. The mapping $M : X_{\varphi} \to P_k(Y)$ such that M(F + G) = M(F) + M(G), M(aF) = aM(F) for all $F, G \in X_{\varphi}$, $a \ge 0$, will be called an $P_k(Y)$ -linear functional on X_{φ} .

Definition 5.2. We say that $M : X_{\varphi} \to P_k(Y)$ is continuous at $F \in X_{\varphi}$ if for every $\epsilon > 0$ there is $\delta > 0$ such that from $\|\operatorname{dist}(F(\cdot), G(\cdot))\|_{\varphi} < \delta$ it follows that $\operatorname{dist}(M(F), M(G)) < \epsilon$.

If M is continuous at every $F \in X_{\varphi}$, then we say that M is continuous on X_{φ} .

Let $f = (f_n)$, where $f_n \in \mathbb{R}$ for every $n \in \mathbb{N}$. Denote

$$M_f(F) = \sum_{n=1}^{\infty} f_n F(n)$$

for every $F \in X$.

Lemma 5.3. Let $1 , <math>\frac{1}{p} + \frac{1}{q} = 1$, $f = (f_k)$ where $f_k = 0$ for $k = n+1, n+2, \ldots$ Then M_f is a $P_k(Y)$ -linear and continuous functional on X_{l^p} .

Proof. We have

$$M_f(F) = \sum_{k=1}^n f_k F(k)$$

for every $F \in X_{l^p}$, so $M_f(F) \in P_k(Y)$ for every $F \in X_{l^p}$ and M_f is a $P_k(Y)$ -linear. We also have for all $F, G \in X_{l^p}$ that

$$\operatorname{dist}(M_{f}(F), M_{f}(G)) \leqslant \sum_{k=1}^{n} |f_{k}| \operatorname{dist}(F(k), G(k)) \leqslant ||f||_{l^{q}} ||\operatorname{dist}(F(\cdot).G(\cdot))||_{l^{p}}.$$

Theorem 5.4. Let $1 , <math>\frac{1}{p} + \frac{1}{q} = 1$, $f \in l^q$. Then M_f is a $P_k(Y)$ -linear and continuous functional on X_{l^p} .

Proof. Let $f = [f_1, \ldots, f_n, \ldots], f_n = [f_1, \ldots, f_n, 0, 0, \ldots], f \in l^q$.

It is easy to prove that for every $F \in X_{l^p}$ the sequence $\{M_{f_n}(F)\}$ is a Cauchy sequence in $\langle P_k(Y), \text{dist} \rangle$, so there is $A \in P_k(Y)$ such that $\text{dist}(M_{f_n}, A) \to 0$ as $n \to \infty$.

We also have for every $F \in X_{l^p}$:

$$\operatorname{dist}(M_f(F), M_{f_n}(F)) \leqslant \sum_{k=n+1}^{\infty} \operatorname{dist}(f_k F(k), \theta) \leqslant \\ \leqslant \sum_{k=n+1}^{\infty} |f_k| |F(k)| \leqslant \left(\sum_{k=n+1}^{\infty} |f_k|^q\right)^{\frac{1}{q}} |||F|||_{l^p} \to 0$$

as $n \to \infty$. So $M_f(F) = A$.

Let $F, G \in X_{l^p}$. We have

$$dist(M_f(F), M_f(G)) \leq \leq dist(M_f(F), M_{f_n}(F)) + dist(M_{f_n}(F), M_{f_n}(G)) + dist(M_{f_n}(G), M_f(G)),$$

so M_f is $P_k(Y)$ -linear and continuous functional on X_{l^p} .

Analogously we obtain the following two theorems (see also [9], Theorem 13.18):

Theorem 5.5. Let $f \in m$. Then M_f is a $P_k(Y)$ -linear and continuous functional on X_{l^1} .

Theorem 5.6. Let φ and its complementary φ^* be the N-functions, $\varphi = (\varphi_i)$, such that for every $u_0 > 0$ there is c > 0 for which $\frac{\varphi_i(u)}{u} \ge c$ for $u \ge u_0$ and $i \in \mathbb{N}$, (δ_2) holds for φ , $f \in l^{\varphi^*}$. Then M_f in $P_k(Y)$ -linear and continuous functional on X_{φ} .

Denote

$$w_f(F) = \sum_{n=1}^{\infty} f_n |F(n)|,$$

for every $F \in X_{l^p}$.

Applying the proof of Theorem 5.4 we obtain the following

Theorem 5.7. Let $1 , <math>\frac{1}{p} + \frac{1}{q} = 1$, $f \in l^q$, $f(n) \ge 0$ for every $n \in \mathbb{N}$. Then:

 $w_f(F+G)\leqslant w_f(F)+w_f(G) \ \ and \ \ w_f(aF)=aw_f(F) \ \ for \ all \ \ F,G\in X_{l^p}.$

Moreover, for every $\epsilon > 0$ there is $\delta > 0$ such that from $F, G \in X_{l^p}$, $||F| - |G|||_{l^p} < \delta$ it follows $|w_f(F) - w_f(G)| < \epsilon$.

Bibliography

- 1. Hu S., Papageorgiou N.S.: Handbook of Multivalued Analysis. 1. Theory. Kluwer, Dordrecht 1997.
- Kasperski A.: Modular approximation by a filtered family of sublinear operators. Comment. Math. 27 (1987), 109–114.
- 3. Kasperski A.: Modular approximation in \tilde{X}_{φ} by a filtered family of \tilde{X}_{φ} -linear operators. Funct. Approx. Comment. Math. **20** (1992), 183–187.
- Kasperski A.: Modular approximation in X

 ^φ by a filtered family of dist-sublinear operators and dist-convex operators. Math. Japonica 38 (1993), 119–125.
- Kasperski A.: Notes on approximation in the Musielak-Orlicz sequence spaces of multifunctions. Comment. Math. Univ. Carolin. 36 (1995), 19–24.
- Kasperski A.: Remarks on multifunctionals on some spaces of multifunctions. Math. Japonica 51 (2000), 411–417.
- Kasperski A.: On some approximation problems in Musielak-Orlicz spaces of multifunctions. Demonstratio Math. 37 (2004), 393–406.
- Musielak J.: Modular approximation by a filtered family of linear operators. In: Functional Analysis and Approximation, Proc. Conf. Oberwolfach, August 9-16, 1980, Birhauser-Verlag, Basel 1981, 99–110.
- Musielak J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Math. 1034, Springer-Verlag, Berlin 1983.