Approximation in Musielak-Orlicz
sequence vector spaces of multifunctions
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Abstract. We introduce the space of vector multifunctions X, and we study its
completeness. Also we give some approximation theorems in this space. Also we give
some applications with singular kernel operators.
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1. Introduction

In [8] a general approximation theorem in modular spaces was obtained for linear
operators. This theorem was extended in [2] and [9] to some nonlinear operators
in L¥ and in [3, 4] to some simple space of multifunctions. In [7] these theorems
were extended to vector spaces of multifunctions genereted by L¥ with Lebesgue
measure. The aim of this note is to obtain a generalization of [8] and [5] for vector
multifunctions with atom measure. Moreover in Section 5 we extend some results
from [6, 9]. In Section 2 we give some initial informations about Musielak-Orlicz
spaces and multifunctions.

Let N be the set of all nonnegative integers and [¥ be the Musielak-Orlicz sequence
space generated by the modular

plx) =Y wilt),  x=(t),
=0

where ¢ = (p;) is a sequence of p-functions with parameter , i.e. for every i € N we
have: p; : R — Ry = [0,00), ¢;(u) is an even continuous function, equal to zero iff
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u = 0 and nondecreasing for u > 0 with lim,_, o ¢;(u) = 0o. Let Y be a real separable
Banach space with the norm || - ||. Let 6 be the zero element in Y. Let Py (Y") denote
the set of all nonempty and compact subsets of Y. For any A, B € P,(Y) we denote

dist(A, B) = max { max min |l — y||,r;1€aé<£n€11141 |z — yH},

X ={F:N—=2Y:F(i) € P.(Y) for every i € N}.

Every function from N to 2Y will be called a sequential vector multifunction. For
every F' € X we define the functions |F'| by the formula:

|F|(7) = dist(F(i),0) for every i € N.
Let now [a,b] denote a compact interval for all a,b € R, a < b. Define
X,={FeX:|F|lel*}.

Let V be an abstract set of indices . Let V be a filter of subsetsof V. Let 0 : N — Y
be such that 0(i) = 6 for every i € N.

2. Preliminary

We will present first some definitions and auxiliary results from the book [9].

Modular spaces

Definition 2.1. Let X be a real vector space. A functional p : X — [0,400] is called
a modular, if the following conditions hold for arbitrary x,y € X :

1. p(0) =0 and p(x) = 0 implies x =0,
2. p(-2) = plz),
3. plaz + Py) < p(x) + p(y) fora, 20, a+ 5 =1.

If in place of 8 there holds
3. ploax + By) < ap(x) + Bpy) for a,8 20, a+ =1,

then the modular p is called convez.

Definition 2.2. If p is a modular in X, then

Xp:{xEX:;li}%p()\x)zo}

is called a modular space.
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Theorem 2.3. If p is a modular in X, then
. x
|z, = inf{u >0: p(a) < u}

is an F-norm in X,, having the following properties:

—if p(Az1) < p(Ax2) for every A > 0, where x1,29 € X, then |x1], < |x2|, and
moreover,

—ifx € X,, then |Az|, is a nondecreasing function of X > 0,

- if |z|, < 1, then p(x) < |z],.

If p is a convex modular, then
lzll, = inf{u>0: p(5) < 1},
U

15 a norm in X,, which is called the Luzemburg norm.

Theorem 2.4. Let p be a modular in X. If v € X, and x, € X, fork =1,2,..., then
the condition |x — zx|, — 0 as k — oo is equivalent to the condition p(A(x — %)) — 0
as k — oo for every A > 0. If p is a convex modular in X, then the same statement
holds, replacing |- |, by || - |-

Definition 2.5. Let p be a modular in X. A sequence {x,,} of elements of X, is called
modular convergent to x € X, if there exists a A > 0 such that p(M(zr —x)) — 0 as

k — oco. We denote this writing xy, B

Theorem 2.6. The p-convergence in X, follows from norm convergence in X,. Norm
convergence and p-convergence are equivalent in X,, if and only if, the following
condition holds:

if e € X,, p(ar) = 0, then p(2xy) — 0.

Definition 2.7. Let p be a modular in X. A set A C X, will be called p-closed, if
zp € A and 2, 5 x imply x € A.

The smallest p-closed set containing the set A will be called the p-closure of A and
denoted A”. If A" = X, then A will be called p-dense in X,,.

Musielak-Orlicz spaces

Definition 2.8. Let (2, X, ) be a measure space, where the measure p is complete
and not vanishing identically. A real function ¢ on 2% [0,+00), will be said to belong
to the class @, if it satisfies the following conditions:

i. o(t,u) is a p-function of the variable u = 0 for every t € (2, i.e. p(t,u) is
a nondecreasing, continuous function of u such that (t,0) = 0, p(t,u) > 0 for
u>0, p(t,u) = 0o as u — oo,

1. p(t,u) is a X-measurable function of t for every u > 0.

Let X be the set of all real-valued, Y-measurable and finite u-almost everywhere
functions on (2, with equality p-almost everywhere.
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It is easily seen that (¢, |x(t)|) is a X-measurable function of ¢ for every z € X
and that

p@%=/w@ﬁﬂﬂwm
N

is a modular in X. Moreover, if (¢, u) is a convex function of u for all ¢ € {2, then p
is a convex modular in X.

Definition 2.9. The modular space X, will be called Musielak-Orlicz space and de-
noted by L¥:

L¥={xe X: /go(t, Az@®)])du — 0 as A — 04+ }.
7

Moreover, the set

Lf = {a e X [ pltla(®)l)du < 0}
(9]

will be called the Musielak-Orlicz class. A function x € X will be called a finite element
of L?, if \x € L§ for every X > 0. The space of all finite elements of X will be denoted
by E¥.

If X is the space of sequences x = {¢;} with real terms t;, ¢ = {¢;}, where ¢; are
p-functions and

p(x) = willt]),
=1

we shall write [¥ in place of L¥ and [¥ is called the Musielak-Orlicz sequence space.
Theorem 2.10.

a. L¥ is the set of all x € X such that p(Ax) < oo for some A > 0.

b. L§ is a convex subset of LY and L¥ is the smallest vector subspace of X containing
Lg.

c. E¥ is the largest vector subspace of X contained in L.

Definition 2.11. A function ¢ will be called locally integrable, if

/go(t, u)dp < 0o
A

for every uw >0 and A € X with u(A) < co.

Theorem 2.12. Let S be the set of all simple, integrable functions on {2 and let
@ € & be locally integrable. Then S C E¥. Moreover, supposing pu to be o-finite, E¥
is the closure of S with respect to the F-norm |- |, and S is p-dense in L¥.

Theorem 2.13. Let u be o-finite. Then the Musielak-Orlicz space LY is complete
with respect to the F-norm |- |,.
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Theorem 2.14.
a. If p is o-finite and atomless and ¢ € ®, then E¥ = L§ = L%, if and only if, the
following condition holds:

(42) p(t, 2u) < Kop(t, u) + h(t)

for allu > 0 and almost every t € {2, where h is a nonnegative, integrable function
i 2 and K is a positive constant.

b. If ¢ € @, where ¢ = {pn}, then 1§ = 1?, if and only if, the following condi-
tion holds: there exist positive numbers 6, K and a sequence {an} of nonnegative

o0
numbers with Y, a, < oo such that
n=1

(62) on(u) < 0 implies ¢, (2u) < Kop,(u) + ay,

forallu>0,n=12,...

Let us remark that the implication
(AQ) = LBP =LY

holds without any assumptions on the measure u for any ¢ € @.
Theorem 2.15.

a. If p is o-finite and atomless and p € ®, @ is locally integrable, then the following
conditions are mutually equivalent:

(1) Lg = L,
(2) E¥ = L%,
(3) ¢ satisfies the condition (As),
(4) modular convergence and norm convergence are equivalent in L¥.
b. If p € @, where ¢ = {p, }, then the following conditions are mutually equivalent:
(1) 1§ =17,
(2) E¥ =1%,
(3) ¢ = (vi) satisfies the condition (J2),
(4) modular convergence and norm convergence are equivalent in (¥ .

Let us remark that if ¢ € @ is a convex function of the variable u € R for every
t € {2, then ¢ is of the form

|l

p(t,u) = / p(t, 7)dr, (1)
0

where p(t,u) is the right-hand derivative of (¢, u) for a fixed ¢ € £2.

Definition 2.16. We shall say that a function ¢ € @ is an N-function if ¢ is a convex
function of u for every t € £2 and there hold the conditions:
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T AGLD (2)
U/*)0+ u
lim plt,u) =00 (3)
u—00 u

for every t € (2.

Theorem 2.17. ¢ € & is an N-function, if and only if, ¢ is of the form (1), where
p(t,7) > 0 for 7 > 0, p(t,7) is a right-continuous and nondecreasing function of
720, p(t0) =0, p(t,7) = 00 as T — oo for every t € (2.

Remark 2.18. Let ¢ be an N-function of the form (1) and let

p*(t,0) =sup{r : p(t,7) < o}.
If p satisfies the conditions expressed in the previous theorem, then p* satisfies the
same assumptions.

Definition 2.19. Let ¢ be an N-function of the form (1) and let p* be defined by the
formula

p*(t,0) = sup{r: p(t,7) < o}.
Then the function

Jul

W@w%j/ﬂﬁﬂma
0

is called complementary to ¢ in the sense of Young.
Evidently, ¢* is again an N-function.
Theorem 2.20. Let ¢ be an N-function and let p* be complementary to ¢ in the
sense of Young. Then they satisfy the Young inequality
uv < p(t,u) + (¢, v)

foru,v>0,t€ 82, and

e (t,v) = Sglg{uv —(t,u)}, o(t,u) = Sglg{uv —@*(t,v)},

consequently, ¢ is complementary to ¢* in the sense of Young.
We shall introduce now the Orlicz norm || - ||,,0 in L¥ if ¢ is an N-function.

Theorem 2.21. Let a measure p be o-finite, ¢ be an N -function and ¢ locally inte-
grable, ©* complementary to ¢ in the sense of Young and let

L‘f* = {y : /gp*(t, ly(t))du <1, y measumble}.
I7;

Then
Hﬂmozsm>/mwmww

*
yeLY D
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is a norm in L¥ (called the Orlicz norm) and
lzllo < ll2llp.0 < 2[z],

for all x € L¥.

Theorem 2.22. Let ¢ be an N-function, ¢* complementary to ¢ in the sense of
Young, © € L¥, y € L¥ . Then there hold the following Holder inequalities:

| [ wtowtorin] < ellollyle
2

| [ wtwtorin] < el lyle o
2

where
M@Z/ﬂHMMWM KNWZ/W@W@WM
N N

Corollary 2.23. If ¢ is an N-function and ©* is a complementary to ¢ in the sense
of Young, y € L¥", then

ﬂmz/@@mmm
N

is a linear, continuous functional over L¥ with the norm || f|| = ||yl .0-

Definition 2.24. We say that functional f : L¥ — R is p- continuous if x, %0 in
L¥ implies f(xyn) — 0.

Theorem 2.25. Let a measure p be o-finite and let an N-function ¢ satisfies the
following condition:

— for every ug > 0 there exists a ¢ > 0 such that @ > ¢ for u = up and all
te s

Let the function ¢* complementary to ¢ be locally integrable. Then
f@) = [ Oy
0

is a p-continuous linear functional over L¥ for everyy € L¥ .
Theorem 2.26. Let a measure p be o-finite and let N-function ¢ be such that:
— for every ug > 0 there exists a ¢ > 0 for which @ >c foru>uy andt e (2.

Moreover, let both functions ¢ and ¢* (complementary to p) be locally integrable. Then
for every linear, p-continuous functional f over L¥ there exists a function y € L¥
such that

ﬂmz/@@mmm
N

for every x € L¥.
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Theorem 2.27. Let an N-function ¢ and its complementary ©* be locally integrable.
Let us suppose that for every ug > 0 there is a ¢ > 0 for which @ > c for
u = ug and t € 2. Moreover, let us suppose that one of the following two conditions
is satisfied:

a. a measure p is o-finite and atomless and ¢ satisfies the condition (Asz),
b. 2={1,2,...}, p({n}) =1 forn=1,2,... and condition (d2) holds for ¢.

Then the general form of a linear functional over L¥ continuous with respect to the
norm s

f(z) = / £(t)y()dp

I7;
for z € L¥ with y € L¥", and ||| = ||y|| 0. 0.

Now we will present some general definitions and auxiliary results about the mul-
tifunctions from the book [1].
Let now X be a Hausdorff topological space. Denote:

— 2% the collection of all subsets of X,

— 2%\ (): the collection of all nonempty subsets of X.

— Ps(X)={A C X : nonempty, closed},

— P¢e(X) ={A C X : nonempty, closed, convex},

— Pyy(X) ={A C X : nonempty, bounded, closed},

— Pyje(X) ={A C X : nonempty, bounded, closed, convex},
— Py(X)={A C X : nonempty, compact},

— Py = {A C X : nonempty, compact, convex}.

If (X, d) is a metric space we denote:
Bx(z,a) ={y € X : d(z,y) < a}.

Let now (X, d) be a metric space. In what follows given any € X and A € 2%\ ),
the distance of z from A, is defined by

d(z, A) = inf{d(z,a) : a € A}.

As usual, d(z,0) = +o0.
Definition 2.28. If A,C € 2%, we define

a. h*(4,C) =sup{d(a,C) :a € A},
b. h*(C,A) =sup{d(c,A) : a € C},
c. h(A,C) = max{h*(A,C),h*(C,A)}, the Hausdor[f distance between A and C.

Directly from the definition, we can check that the following properties hold for
any A,C, D € 2%:
h(A,A) =0, h(A,C) = h(C.A), h(A,C) < h(A, D)+ h(D,0).

Hence h is an extended pseudometric on 2%. o
Moreover, note that h(A,C) = 0 if and only if A = C. So Py(X) equipped with
the Hausdorff distance h becomes a metric space.
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Theorem 2.29. If (X,d) is a complete metric space, then so is (Ps(X),h).

Theorem 2.30. If (X,d) is a complete metric space, then Py(X) is a closed subset
of (Py(X),h), whence (Py(X),h) is a complete metric space.

Theorem 2.31. Py¢(X) is a closed subset of (P¢(X), h). Therefore, if (X, d) is a com-
plete metric space, so is (Ppy(X), h).

Theorem 2.32. If X is a Banach space, then Py.(X), Pyse(X), Pre(X), Pu(X),
Pys(X) are complete subspaces of the metric space (Py(X),h).

Theorem 2.33. If X is a normed space and A, C, Ay, C1, Az, Cy € 2%\ 0, then
h(AA,NC) = |A| h(A, C) for all A € R,

h(Al + AQ, C1 + 02) < h(Al, Cl) + h(AQ + 02)

Measurable multifunctions

Now we will present some definitions and auxiliary results about the measurable
multifunction from the book [1].

Throughout this section (§2,Y) is a measurable space, (X, d) a separable metric
space.Let us fix a multifunction F : 2 — 2%,

Definition 2.34.

a. F is said to be “strongly measurable” if for every C C X closed, we have
FT(O)={weR:Flw)NC #0} € X.

b. F is said to be “measurable” if for every U C X open, we have
FTU)={weR:Flw)NU #0} € X.

c. F is said to be “K-measurable” if for every K C X compact, we have
FT(K)={weR:FwNK#0}eX.

d. F is said to be “graph measurable” if

GrF ={(w,2) € 2x X :z € F(w)} € X x B(X).

Theorem 2.35. If F' is strongly measurable, then F is measurable.

Theorem 2.36. A multifunction F : 2 — 2% is measurable if and only if for every
reX,
w — d(x, F(w)) = inf{d(z,2') : 2’ € F(w)}

is a measurable R -valued function.
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Definition 2.37. Let Y be a metric space. A function f: 2 x X — Y is said to be
a “Caratheodory function” if

a. for every x € X, w — f(w,x) is measurable,
b. for every w € 2, x — f(w,x) is conlinuous.

Theorem 2.38. If Y is a metric space and f : 2 x X — Y is a Caratheodory
function, then f(-,-) is jointly measurable.

Theorem 2.39. If F': 2 — Pp(X) U0 is measurable, then F is graph measurable.

Theorem 2.40. If F : 2 — P (X), then F is strongly measurable if and only if it is
measurable.

Theorem 2.41. If F : 2 — Py(X), then strong measurability = measurability =
K-measurability.

Theorem 2.42. If X is o-compact and F' : 2 — P;(X), then strong measurability
& measurability < K-measurability.

Theorem 2.43. Let (2, 1) be a o-finite and complete measure space. Let (X, d)
be complete separable metric space and F : 2 — Pp(X). Consider the following
statements:

(a) for every D € B(X), F~(D) € X,

(b) F is strongly measurable,

(¢) F is measurable,

(d) for every x € X, w — d(z, F(w)) is measurable,
(¢) GrF € ¥ x B(X),

then all these statements are equivalent.

Theorem 2.44. If (2, X)) is a measurable space, X is a complete measure space and
F: 2 — Py(X) is measurable, then F' admits a measurable selection, i.e., there exists
f: 82 = X measurable such that for every w € §2, f(w) € F(w).

Theorem 2.45. If (12, X) is a measurable space, X is a complete metric space and
F: 2 = P(X), then the following statements are equivalent:

a. F is measurable,
b. there exists a sequence {fn}tn>1 of measurable selectors of F such that for every
we N

F(OJ) = {fn(w)}n>l

Decomposable sets and sets of LP selectors

Now we will present some definitions and auxiliary results about the decomposable
sets and the sets of selectors from the book [1].

Let now (£2,X, 1) be a o-finite measure space, X a Banach separable space. Let
L°(£2, X) be the space of all equivalent classes in the set of all measurable maps from
2 to X.



Approximation in Musielak-Orlicz sequence vector spaces of multifunctions 213

Definition 2.46. A subset K of L°(§2, X) is said to be decomposable if for all f1, fo €
LY(02,X), A€ X, we have
xafi +xoaf2 € K.

For 1 < p < oo, we define
Sh={feLP(2,X): f(w) € F(w) p—a.e.}.

Lemma 2.47. If F : 2 — 2%\ 0 is graph measurable and 1 < p < oo, then Sh # ()
if and only if
inf{||z|| : x € F(w)} < h(w) p—a.e.

for some h € LP({2).

Theorem 2.48. If F : 2 — Py(X) is graph measurable and ST, # 0, then there exists
a sequence { fy}n>1 C S such that

P(w) = T ikt — ace.

Theorem 2.49. If K is a nonempty, closed subset of LP(£2,X) for 1 < p < oo, then
K = S%. for some uniquely defined measurable multifunction F : 2 — P¢(X) if and
only if K is decomposable.

Definition 2.50. A multifunction F : 2 — 2%\ () is said to be LP-integrably bounded
(1 < p < o0) and integrably bounded (for p = 1) if there exists h € LP(§2) such that

|F(w)| :=sup{||z| : z € F(w)} < h(w) u—a.e.

Theorem 2.51. If F' is graph measurable, then S%. is LP(£2, X)-bounded if and only
if F'is LP-integrably bounded (1 < p < 00).

Integral of multifunction

Now we will present some definitions and auxiliary results about the integral of
multifunction from the book [1].

Throughout out this section (2, X, ) is a fixed o-finite measure space and X is
a separable Banach space. Let F : 2 — 2%\ () be a multifunction with S} # (). Then
the set-valued Aumann integral of F' is defined in the following way.

Definition 2.52.

[ F@inte) = { [ st : 1 € st}
(93

2

We say that two measurable multifunctions Fy, Fy : £2 — 2% \ () are equivalent if
Fi(w) = F5(w) p-a.e. Denote by L} (X)) the space of all equivalence classes of multi-
functions F' : {2 — P¢(X) which are graph measurable and integrably bounded. Also
by L}C(X ) we donote the subspace of all (equivalence classes) of graph measurable
and integrably bounded multifunctions with values in Ps.(X). Since
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hF(w), G(w)) < [Fw)| + |G (W),

we deduce that h(F,G) € L*(£2)4. So we can define

A(F,G) /h 0))dp(w).

It is easily seen that A is a metric on L}(X ) and we have

Theorem 2.53. The space (L}(X), A) is a complete metric space and (L}C(X),A)
is its closed subspace.

Theorem 2.54. If F,G € Ly(X), then

([ P@)dn(e), [ Gwidu(w)) < AF,G).
2 2

Theorem 2.55. If F,G : 2 — P¢(X) are graph measurable with S}, Sk # 0, then

d/‘ w) + G(w))du(w) _d/F )dp(w /G Y (w

Theorem 2.56. If F : 2 — 2%\ ) is a graph measurable multifunctions with SLAD,
then

cl/WF(w)du(w) = m/F(w)du(w) = cl/convF(w)du(w).
Q Q 2

Theorem 2.57. If the measure i is nonatomic, F : 2 — P¢(X) is graph measurable
and S # 0, then cl [ F(w)du(w) is conves.
0

Corollary 2.58. If u is nonatomic, X is finite dimensional, F : {2 — Py(X) is graph
measurable and S} # 0, then [ F(w)du(w) is convez.
Q

Theorem 2.59. If u is nonatomic, F' : 2 — P¢(R"™) is graph measurable and for
every w € {2, F(w) C R, then

/F Ydp(w /convF( )du(w).

3. Main results

We start from the generalization of the definition of Musielak-Orlicz sequence space
of multifunctions from [5]. We use some ideas from [3, 5, 7, 8] and we generalize the
main approximation theorem for I¥ from [8].
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Theorem 3.1. Let F,, € X, for every n € N. Suppose that for every e > 0 and for
every a > 0 there is K > 0 such that p(adist(F,(-), Fn(-)) < € for all m,n > K.
Then there exists F € X, such that p(adist(F,(-),F(-))) = 0 as n — oo for every
a>0.

Proof. Let F,, € X, for every n € N. If the assumptions of the Theorem hold, then
{F,} is a Cauchy sequence in the complete space C(Y') with Hausdorff metric. Hence
there are F'(i) € C(Y') such that dist(F, (i), F'(i)) — 0 as n — oo for every ¢ € N. Fix
€ > 0. Applying the Fatou lemma we easily obtain that there exists K > 0 such that
pladist(F,(-), F(-)) < € for every n > K. We also have for every a > 0 that

p(alF)) < p(2a dist(Fa(), F()) + p(2alFa]).
So F' € X,,. O

The space X, will be called a Musielak-Orlicz vector sequence space of multifunc-
tions.
Definition 3.2. A function g : V — R tends to zero with respect to a filter V, written
g(v) LN 0, if for every e > 0 there is V € V such that | g(v) |< € for everyv € V.

Definition 3.3. An operator C' : X, — X, will be called an X-linear operator if for
all F,G € X,, a,beR,

C(aF +bG)(i) = aC(F)(i) + bC(G)(4) for every i € N.
Definition 3.4. A family T = (T,,)ev of operators T, : X, — X, for everyv e V

will be called (X, dist, V)-bounded, if there exist constants k1,ke > 0 and a function

g:V = Ry such that g(v) 250, and for all F,G € X, there is a set Vig € V for
which
pladist(T,(F)(-), To(G)(-)) < k1p(aks dist(F(-), G(-))) + g(v)

for all v € Vi and for every a > 0.
Definition 3.5. Let F, € X, for everyv € V. Let F € X,. We write F, Loy F, if

for every e > 0 and every a > 0 there exists V € V such that p(adist(F,(-), F(-))) < €
for everyv € V.

Definition 3.6. Let § C X,,.

Sx,av={F€X,: F, di’y F, for some F, € S,v € V}.

Theorem 3.7. Let the family T = (Ty)vev of X-linear operators for every v € 'V,

be (X,dist, V)-bounded. Let S, C X, and let T,(F) Lol p for every F € S,. Let
now S be the set of all finite linear combinations of elements of the set S,. Then

T,(F) gy for every F' € Sx_ a,v.

The proof analogous to that Theorem 4 in [5] is omitted.
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4. Applications

Let now V = N and the filter V will consist of all sets V' C 'V which are complements
of finite sets.

We shall say that ¢ is 74 -bounded, if there are constants ki,ks > 1 and a double
sequence {€y_;} such that

Onyj(u) < kron(kou) + €

o0
forw € R,n,j =0,1,..., where €,; 2 0, €,0 =0,¢; = > €,; < 00,1 € N, and
n=0
€j — 0
as j — 00,8 = sup;ey €; < 00. Let K, j : VXV — Ry and let the family (K, )vev

be almost-singular, i.e. o(v) = >372) K, ; < 0 < oo for all v € V and f(vj 20
for j =1,2,... Let F € X,. We define a family 7 = (7,),ev of operators by the
formula:

ZK“ j ) for every i € V.

Lemma 4.1. Let (K,),ev be almost-singulan let ¢ = (¢i)iev be T4-bounded and p;
be convex for every i € V, then T, : 19 — ¥ for every v € V.

The proof analogous to that of Lemma 1 in [5] is omitted.

Lemma 4.2. If the assumptions of Lemma 1 hold, then the family T = (T,)vev is
(X, dist, V)-bounded and T, is X, -linear-operator for every v € V.

The proof analogous to that of Lemma 2 in [5] is omitted.

Lemma 4.3. Let ¢ = ()2, satisfy the condition (52) Let F € X, and F =

(F(i))52y. Let F, be such that F,(i) = F(i) fori=0,1,...,v and F,(i) =0 for i >
v. Then F, 2% F.

The proof analogous to that of Lemma 3 in [5] is omitted.
Now, let us denote: z; x, = {0,...,0, Ky 1, Ky 2,...}.
——

j—times
Theorem 4.4. Let the assumptions of Lemmas 1 and 8 hold. If x; Kk, Loy for
every j € V, Ky, Y, 1, then T,(F) oV p for every F' € X,.

The proof analogous to that of Theorem 5 in [5] is omitted.
Now, let us denote: Z; x, = {0,...,0, Ky 0, Ky1,...}.
——

j—times

Theorem 4.5. Let the assumptions of Lemmas 1 and &8 hold. If Z; i, Loy for
every j € V, then Ty(F) == L) for every F € X,,.

The proof analogous to that of Theorem 6 in [5] is omitted.
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5. Py (Y )-linear functionals

Now we will present some generalizations on the spaces of multifunctions of the
classical Riesz theorems about a linear and continuous functional on a Banach space.
We use the results of [6, 9].

Let now ¢ be an N-function and N be the set of all natural numbers. Let || - ||,
denote the Luxemburg norm in /¥ and || - ||g denote the Orlicz norm in [%.

Definition 5.1. The mapping M : X, — Py(Y) such that M(F + G) = M(F) +
M(G), M(aF) = aM(F) for oll F,G € X,, a > 0, will be called an Py(Y)-linear
functional on X,,.

Definition 5.2. We say that M : X, — Py(Y) is continuous at F € X, if for
every € > 0 there is 6 > 0 such that from | dist(F(-),G("))|l, < ¢ it follows that
dist(M(F), M(G)) < e.

If M is continuous at every F' € X, then we say that M is continuous on X,.

Let f = (fn), where f, € R for every n € N. Denote

My(F) =Y faF(n)
for every F € X. "
Lemma 5.3. Let1 < p < o0, %—i—% =1, f = (fx) where fr, =0 fork =n+1,n+2,...
Then My is a Pi(Y')-linear and continuous functional on X».
Proof. We have "

My(F) = frF(k)

k=1

for every F' € Xi», so My(F) € Py(Y) for every F' € Xj» and My is a Py (Y)-linear.
We also have for all F,G € X;» that

dist(My(F), My (G)) < ) |fil dist(F(k), G(k)) < || fllaa] dist(F().G()law-
k=1 0

Theorem 5.4. Let 1 < p < o0, % +
continuous functional on Xip.

Proof. Let f=1[f1,--, fny---)s fn =1f1,--+, [n,0,0,...], f €%

It is easy to prove that for every F' € Xj» the sequence {Mjy, (F')} is a Cauchy
sequence in (P(Y'),dist), so there is A € P(Y) such that dist(My,,A) — 0 as
n — 00.

We also have for every F' € Xj»:

% =1, f €l% Then My is a Py(Y)-linear and

dist(My(F), My, (F)) < > dist(fxF(k),0) <

k=n-+1
1
< O RIFEI< Y 1D Flle =0
k=n+1 k=n+1

as n — 00. So My (F) = A.
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Let F,G € X;». We have

dist (M (F), My (G)) <
< dist(M;(F), My, (F)) + dist(M;y, (F), My, (G)) + dist(M;, (G), M (G)),

so My is Py(Y')-linear and continuous functional on X». O

Analogously we obtain the following two theorems (see also [9], Theorem 13.18):

Theorem 5.5. Let f € m. Then My is a Pp(Y)-linear and continuous functional
on Xp.

Theorem 5.6. Let ¢ and its complementary ©* be the N-functions, ¢ = (¢;), such
that for every ug > 0 there is ¢ > 0 for which % > c foru >z ug and i € N, (§2)
holds for o, f € 19" . Then My in Py(Y)-linear and continuous functional on X.

Denote

wr(F) =Y falF(n)],

for every F € Xp».
Applying the proof of Theorem 5.4 we obtain the following

Theorem 5.7. Let 1 < p < 0, % + % =1, feld, f(n) =20 for every n € N. Then:
wi(F+G) Swp(F)+we(G) and wy(aF) =aws(F) forall F,G € Xp.

Moreover, for every € > 0 there is 6 > 0 such that from F,G € Xp, |||F| = |G||li» < 0
it follows \ws(F) —wy(G)| < e.
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